--- language: - da - fo - gmq - is - nb - nn - no - sv tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-gmq-gmq results: - task: name: Translation isl-swe type: translation args: isl-swe dataset: name: europeana2021 type: europeana2021 args: isl-swe metrics: - name: BLEU type: bleu value: 22.2 - name: chr-F type: chrf value: 0.45562 - task: name: Translation nob-isl type: translation args: nob-isl dataset: name: europeana2021 type: europeana2021 args: nob-isl metrics: - name: BLEU type: bleu value: 29.7 - name: chr-F type: chrf value: 0.54171 - task: name: Translation nob-swe type: translation args: nob-swe dataset: name: europeana2021 type: europeana2021 args: nob-swe metrics: - name: BLEU type: bleu value: 54.0 - name: chr-F type: chrf value: 0.73891 - task: name: Translation dan-isl type: translation args: dan-isl dataset: name: flores101-devtest type: flores_101 args: dan isl devtest metrics: - name: BLEU type: bleu value: 22.2 - name: chr-F type: chrf value: 0.50227 - task: name: Translation dan-nob type: translation args: dan-nob dataset: name: flores101-devtest type: flores_101 args: dan nob devtest metrics: - name: BLEU type: bleu value: 28.6 - name: chr-F type: chrf value: 0.58445 - task: name: Translation dan-swe type: translation args: dan-swe dataset: name: flores101-devtest type: flores_101 args: dan swe devtest metrics: - name: BLEU type: bleu value: 38.5 - name: chr-F type: chrf value: 0.65000 - task: name: Translation isl-dan type: translation args: isl-dan dataset: name: flores101-devtest type: flores_101 args: isl dan devtest metrics: - name: BLEU type: bleu value: 27.2 - name: chr-F type: chrf value: 0.53630 - task: name: Translation isl-nob type: translation args: isl-nob dataset: name: flores101-devtest type: flores_101 args: isl nob devtest metrics: - name: BLEU type: bleu value: 20.5 - name: chr-F type: chrf value: 0.49434 - task: name: Translation isl-swe type: translation args: isl-swe dataset: name: flores101-devtest type: flores_101 args: isl swe devtest metrics: - name: BLEU type: bleu value: 26.0 - name: chr-F type: chrf value: 0.53373 - task: name: Translation nob-dan type: translation args: nob-dan dataset: name: flores101-devtest type: flores_101 args: nob dan devtest metrics: - name: BLEU type: bleu value: 31.7 - name: chr-F type: chrf value: 0.59657 - task: name: Translation nob-isl type: translation args: nob-isl dataset: name: flores101-devtest type: flores_101 args: nob isl devtest metrics: - name: BLEU type: bleu value: 18.9 - name: chr-F type: chrf value: 0.47432 - task: name: Translation nob-swe type: translation args: nob-swe dataset: name: flores101-devtest type: flores_101 args: nob swe devtest metrics: - name: BLEU type: bleu value: 31.3 - name: chr-F type: chrf value: 0.60030 - task: name: Translation swe-dan type: translation args: swe-dan dataset: name: flores101-devtest type: flores_101 args: swe dan devtest metrics: - name: BLEU type: bleu value: 39.0 - name: chr-F type: chrf value: 0.64340 - task: name: Translation swe-isl type: translation args: swe-isl dataset: name: flores101-devtest type: flores_101 args: swe isl devtest metrics: - name: BLEU type: bleu value: 21.7 - name: chr-F type: chrf value: 0.49590 - task: name: Translation swe-nob type: translation args: swe-nob dataset: name: flores101-devtest type: flores_101 args: swe nob devtest metrics: - name: BLEU type: bleu value: 28.9 - name: chr-F type: chrf value: 0.58336 - task: name: Translation dan-nob type: translation args: dan-nob dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: dan-nob metrics: - name: BLEU type: bleu value: 78.2 - name: chr-F type: chrf value: 0.87556 - task: name: Translation dan-swe type: translation args: dan-swe dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: dan-swe metrics: - name: BLEU type: bleu value: 72.5 - name: chr-F type: chrf value: 0.83556 - task: name: Translation nno-nob type: translation args: nno-nob dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nno-nob metrics: - name: BLEU type: bleu value: 78.9 - name: chr-F type: chrf value: 0.88349 - task: name: Translation nob-dan type: translation args: nob-dan dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nob-dan metrics: - name: BLEU type: bleu value: 73.9 - name: chr-F type: chrf value: 0.85345 - task: name: Translation nob-nno type: translation args: nob-nno dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nob-nno metrics: - name: BLEU type: bleu value: 55.2 - name: chr-F type: chrf value: 0.74571 - task: name: Translation nob-swe type: translation args: nob-swe dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nob-swe metrics: - name: BLEU type: bleu value: 73.9 - name: chr-F type: chrf value: 0.84747 - task: name: Translation swe-dan type: translation args: swe-dan dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: swe-dan metrics: - name: BLEU type: bleu value: 72.6 - name: chr-F type: chrf value: 0.83392 - task: name: Translation swe-nob type: translation args: swe-nob dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: swe-nob metrics: - name: BLEU type: bleu value: 76.3 - name: chr-F type: chrf value: 0.85815 --- # opus-mt-tc-big-gmq-gmq ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from North Germanic languages (gmq) to North Germanic languages (gmq). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-29 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): dan fao isl nno nob nor swe - Target Language(s): dan isl nno nob nor swe - Valid Target Language Labels: >>dan<< >>isl<< >>nno<< >>nob<< >>nor<< >>swe<< - **Original Model**: [opusTCv20210807_transformer-big_2022-07-29.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT gmq-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-gmq/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>fao<< Jeg er bange for kakerlakker.", ">>nob<< Vladivostok är en stad i Ryssland." ] model_name = "pytorch-models/opus-mt-tc-big-gmq-gmq" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Tað eru uml. # Vladivostok er en by i Russland. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-gmq") print(pipe(">>fao<< Jeg er bange for kakerlakker.")) # expected output: Tað eru uml. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-29.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | dan-nob | tatoeba-test-v2021-08-07 | 0.87556 | 78.2 | 1299 | 9620 | | dan-swe | tatoeba-test-v2021-08-07 | 0.83556 | 72.5 | 1549 | 10060 | | nno-nob | tatoeba-test-v2021-08-07 | 0.88349 | 78.9 | 467 | 3129 | | nob-dan | tatoeba-test-v2021-08-07 | 0.85345 | 73.9 | 1299 | 9794 | | nob-nno | tatoeba-test-v2021-08-07 | 0.74571 | 55.2 | 466 | 3141 | | nob-swe | tatoeba-test-v2021-08-07 | 0.84747 | 73.9 | 563 | 3698 | | swe-dan | tatoeba-test-v2021-08-07 | 0.83392 | 72.6 | 1549 | 10239 | | swe-nob | tatoeba-test-v2021-08-07 | 0.85815 | 76.3 | 563 | 3708 | | isl-swe | europeana2021 | 0.45562 | 22.2 | 563 | 10293 | | nob-isl | europeana2021 | 0.54171 | 29.7 | 538 | 9932 | | nob-swe | europeana2021 | 0.73891 | 54.0 | 538 | 9885 | | dan-isl | flores101-devtest | 0.50227 | 22.2 | 1012 | 22834 | | dan-nob | flores101-devtest | 0.58445 | 28.6 | 1012 | 23873 | | dan-swe | flores101-devtest | 0.65000 | 38.5 | 1012 | 23121 | | isl-dan | flores101-devtest | 0.53630 | 27.2 | 1012 | 24638 | | isl-nob | flores101-devtest | 0.49434 | 20.5 | 1012 | 23873 | | isl-swe | flores101-devtest | 0.53373 | 26.0 | 1012 | 23121 | | nob-dan | flores101-devtest | 0.59657 | 31.7 | 1012 | 24638 | | nob-isl | flores101-devtest | 0.47432 | 18.9 | 1012 | 22834 | | nob-swe | flores101-devtest | 0.60030 | 31.3 | 1012 | 23121 | | swe-dan | flores101-devtest | 0.64340 | 39.0 | 1012 | 24638 | | swe-isl | flores101-devtest | 0.49590 | 21.7 | 1012 | 22834 | | swe-nob | flores101-devtest | 0.58336 | 28.9 | 1012 | 23873 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Fri Aug 12 13:30:22 EEST 2022 * port machine: LM0-400-22516.local