--- base_model: mistralai/Mistral-Nemo-Instruct-2407 library_name: peft license: other tags: - llama-factory - lora - generated_from_trainer model-index: - name: combined_sft_10000_mcq_1epoch results: [] --- # combined_sft_10000_mcq_1epoch This model is a fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) on the combined_10000_mcq dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 20 - total_eval_batch_size: 20 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0043 | 0.0333 | 30 | 0.0045 | | 0.0041 | 0.0667 | 60 | 0.0040 | | 0.0042 | 0.1 | 90 | 0.0039 | | 0.0038 | 0.1333 | 120 | 0.0038 | | 0.0036 | 0.1667 | 150 | 0.0037 | | 0.0038 | 0.2 | 180 | 0.0037 | | 0.0039 | 0.2333 | 210 | 0.0038 | | 0.0038 | 0.2667 | 240 | 0.0037 | | 0.0034 | 0.3 | 270 | 0.0031 | | 0.0032 | 0.3333 | 300 | 0.0026 | | 0.0027 | 0.3667 | 330 | 0.0025 | | 0.0022 | 0.4 | 360 | 0.0024 | | 0.002 | 0.4333 | 390 | 0.0022 | | 0.0025 | 0.4667 | 420 | 0.0022 | | 0.0023 | 0.5 | 450 | 0.0021 | | 0.0015 | 0.5333 | 480 | 0.0018 | | 0.0017 | 0.5667 | 510 | 0.0017 | | 0.0024 | 0.6 | 540 | 0.0020 | | 0.0019 | 0.6333 | 570 | 0.0018 | | 0.0015 | 0.6667 | 600 | 0.0016 | | 0.0018 | 0.7 | 630 | 0.0015 | | 0.0014 | 0.7333 | 660 | 0.0015 | | 0.0015 | 0.7667 | 690 | 0.0015 | | 0.0013 | 0.8 | 720 | 0.0014 | | 0.0014 | 0.8333 | 750 | 0.0014 | | 0.0017 | 0.8667 | 780 | 0.0014 | | 0.0016 | 0.9 | 810 | 0.0013 | | 0.0017 | 0.9333 | 840 | 0.0013 | | 0.0011 | 0.9667 | 870 | 0.0013 | | 0.0015 | 1.0 | 900 | 0.0013 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1