{ "best_metric": 0.45071524381637573, "best_model_checkpoint": "./output_v2/7b_cluster014_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_014/checkpoint-200", "epoch": 0.35382574082264484, "global_step": 200, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6451, "step": 10 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.5699, "step": 20 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.5073, "step": 30 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.4662, "step": 40 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.4545, "step": 50 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.4675, "step": 60 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.4524, "step": 70 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.4799, "step": 80 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.5122, "step": 90 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.461, "step": 100 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.4393, "step": 110 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.4981, "step": 120 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.4686, "step": 130 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.469, "step": 140 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.4926, "step": 150 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.4213, "step": 160 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.4412, "step": 170 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.4607, "step": 180 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.4537, "step": 190 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.4358, "step": 200 }, { "epoch": 0.35, "eval_loss": 0.45071524381637573, "eval_runtime": 191.6209, "eval_samples_per_second": 5.219, "eval_steps_per_second": 2.609, "step": 200 }, { "epoch": 0.35, "mmlu_eval_accuracy": 0.4662069900433653, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.3333333333333333, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.2129778240663887, "step": 200 } ], "max_steps": 5000, "num_train_epochs": 9, "total_flos": 2.902219844685005e+16, "trial_name": null, "trial_params": null }