{ "best_metric": 0.42181774973869324, "best_model_checkpoint": "./output_v2/7b_cluster014_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_014/checkpoint-800", "epoch": 1.4153029632905794, "global_step": 800, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6451, "step": 10 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.5699, "step": 20 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.5073, "step": 30 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.4662, "step": 40 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.4545, "step": 50 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.4675, "step": 60 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.4524, "step": 70 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.4799, "step": 80 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.5122, "step": 90 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.461, "step": 100 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.4393, "step": 110 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.4981, "step": 120 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.4686, "step": 130 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.469, "step": 140 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.4926, "step": 150 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.4213, "step": 160 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.4412, "step": 170 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.4607, "step": 180 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.4537, "step": 190 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.4358, "step": 200 }, { "epoch": 0.35, "eval_loss": 0.45071524381637573, "eval_runtime": 191.6209, "eval_samples_per_second": 5.219, "eval_steps_per_second": 2.609, "step": 200 }, { "epoch": 0.35, "mmlu_eval_accuracy": 0.4662069900433653, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.3333333333333333, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.2129778240663887, "step": 200 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.4516, "step": 210 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.428, "step": 220 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.4268, "step": 230 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.4796, "step": 240 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.4645, "step": 250 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.437, "step": 260 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.4531, "step": 270 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.4158, "step": 280 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.4918, "step": 290 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.4283, "step": 300 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.4114, "step": 310 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.4429, "step": 320 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.4476, "step": 330 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.4156, "step": 340 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.4497, "step": 350 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.4355, "step": 360 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.4493, "step": 370 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.4425, "step": 380 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.4114, "step": 390 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.4567, "step": 400 }, { "epoch": 0.71, "eval_loss": 0.4355984628200531, "eval_runtime": 174.9677, "eval_samples_per_second": 5.715, "eval_steps_per_second": 2.858, "step": 400 }, { "epoch": 0.71, "mmlu_eval_accuracy": 0.458230355534593, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.3793103448275862, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.6666666666666666, "mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216, "mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.34782608695652173, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.1960482836625594, "step": 400 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.4463, "step": 410 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.4467, "step": 420 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.422, "step": 430 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.4487, "step": 440 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.4473, "step": 450 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.453, "step": 460 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.4064, "step": 470 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.4487, "step": 480 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.4366, "step": 490 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.4244, "step": 500 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.4112, "step": 510 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.4751, "step": 520 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.4209, "step": 530 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.3893, "step": 540 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.4137, "step": 550 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.4384, "step": 560 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.4461, "step": 570 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.423, "step": 580 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.3713, "step": 590 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.3571, "step": 600 }, { "epoch": 1.06, "eval_loss": 0.4240914583206177, "eval_runtime": 144.1354, "eval_samples_per_second": 6.938, "eval_steps_per_second": 3.469, "step": 600 }, { "epoch": 1.06, "mmlu_eval_accuracy": 0.4612172240268643, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.3793103448275862, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4117647058823529, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.35294117647058826, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.2888787748296953, "step": 600 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.3828, "step": 610 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.3616, "step": 620 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.3479, "step": 630 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.3916, "step": 640 }, { "epoch": 1.15, "learning_rate": 0.0002, "loss": 0.3856, "step": 650 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.3858, "step": 660 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.414, "step": 670 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.3672, "step": 680 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.4017, "step": 690 }, { "epoch": 1.24, "learning_rate": 0.0002, "loss": 0.3742, "step": 700 }, { "epoch": 1.26, "learning_rate": 0.0002, "loss": 0.3476, "step": 710 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.3673, "step": 720 }, { "epoch": 1.29, "learning_rate": 0.0002, "loss": 0.3516, "step": 730 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.4049, "step": 740 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.3387, "step": 750 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.3401, "step": 760 }, { "epoch": 1.36, "learning_rate": 0.0002, "loss": 0.3464, "step": 770 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.3745, "step": 780 }, { "epoch": 1.4, "learning_rate": 0.0002, "loss": 0.3799, "step": 790 }, { "epoch": 1.42, "learning_rate": 0.0002, "loss": 0.3845, "step": 800 }, { "epoch": 1.42, "eval_loss": 0.42181774973869324, "eval_runtime": 144.8192, "eval_samples_per_second": 6.905, "eval_steps_per_second": 3.453, "step": 800 }, { "epoch": 1.42, "mmlu_eval_accuracy": 0.46493289206525323, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.4146341463414634, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0728023134502667, "step": 800 } ], "max_steps": 5000, "num_train_epochs": 9, "total_flos": 1.1641140241728307e+17, "trial_name": null, "trial_params": null }