{ "best_metric": 0.6395586133003235, "best_model_checkpoint": "./output_v2/7b_cluster020_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_020/checkpoint-200", "epoch": 0.08095527221210282, "global_step": 200, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.6996, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7986, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.5936, "step": 30 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6164, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7464, "step": 50 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.8856, "step": 60 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.6476, "step": 70 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.65, "step": 80 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.5282, "step": 90 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.5787, "step": 100 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.6315, "step": 110 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.5419, "step": 120 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.593, "step": 130 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6773, "step": 140 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.5536, "step": 150 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6384, "step": 160 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.5736, "step": 170 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.6157, "step": 180 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.5551, "step": 190 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6446, "step": 200 }, { "epoch": 0.08, "eval_loss": 0.6395586133003235, "eval_runtime": 94.1614, "eval_samples_per_second": 10.62, "eval_steps_per_second": 5.31, "step": 200 }, { "epoch": 0.08, "mmlu_eval_accuracy": 0.4559132721218583, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.3125, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.43478260869565216, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.0596903230868493, "step": 200 } ], "max_steps": 5000, "num_train_epochs": 3, "total_flos": 1.7051861879488512e+16, "trial_name": null, "trial_params": null }