{ "best_metric": 0.32424649596214294, "best_model_checkpoint": "./output_v2/7b_cluster03_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_03/checkpoint-200", "epoch": 2.060085836909871, "global_step": 600, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8627, "step": 10 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.4107, "step": 20 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.3691, "step": 30 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.3979, "step": 40 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.3495, "step": 50 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.3693, "step": 60 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.357, "step": 70 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.3456, "step": 80 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.3122, "step": 90 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.3131, "step": 100 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.3678, "step": 110 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.3364, "step": 120 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.324, "step": 130 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.353, "step": 140 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.3473, "step": 150 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.363, "step": 160 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.3192, "step": 170 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.3125, "step": 180 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.3001, "step": 190 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.3164, "step": 200 }, { "epoch": 0.69, "eval_loss": 0.32424649596214294, "eval_runtime": 166.2846, "eval_samples_per_second": 6.014, "eval_steps_per_second": 3.007, "step": 200 }, { "epoch": 0.69, "mmlu_eval_accuracy": 0.46206132856742516, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.5625, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.36363636363636365, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.8181818181818182, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.1935483870967742, "mmlu_eval_accuracy_professional_law": 0.3, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.954094658943754, "step": 200 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.3516, "step": 210 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.2846, "step": 220 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.3048, "step": 230 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.315, "step": 240 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.3229, "step": 250 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.3218, "step": 260 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.3188, "step": 270 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.3246, "step": 280 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.2986, "step": 290 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.2905, "step": 300 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.2847, "step": 310 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.2384, "step": 320 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.2815, "step": 330 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.2737, "step": 340 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.2985, "step": 350 }, { "epoch": 1.24, "learning_rate": 0.0002, "loss": 0.2747, "step": 360 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.2691, "step": 370 }, { "epoch": 1.3, "learning_rate": 0.0002, "loss": 0.2823, "step": 380 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.2389, "step": 390 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.2552, "step": 400 }, { "epoch": 1.37, "eval_loss": 0.3267834484577179, "eval_runtime": 166.4022, "eval_samples_per_second": 6.01, "eval_steps_per_second": 3.005, "step": 400 }, { "epoch": 1.37, "mmlu_eval_accuracy": 0.4687168428980155, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.5625, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.8, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6086956521739131, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.8181818181818182, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.696969696969697, "mmlu_eval_accuracy_philosophy": 0.4117647058823529, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.1935483870967742, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9237010620787311, "step": 400 }, { "epoch": 1.41, "learning_rate": 0.0002, "loss": 0.2629, "step": 410 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.2455, "step": 420 }, { "epoch": 1.48, "learning_rate": 0.0002, "loss": 0.2857, "step": 430 }, { "epoch": 1.51, "learning_rate": 0.0002, "loss": 0.2728, "step": 440 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.2814, "step": 450 }, { "epoch": 1.58, "learning_rate": 0.0002, "loss": 0.2993, "step": 460 }, { "epoch": 1.61, "learning_rate": 0.0002, "loss": 0.282, "step": 470 }, { "epoch": 1.65, "learning_rate": 0.0002, "loss": 0.269, "step": 480 }, { "epoch": 1.68, "learning_rate": 0.0002, "loss": 0.2534, "step": 490 }, { "epoch": 1.72, "learning_rate": 0.0002, "loss": 0.2965, "step": 500 }, { "epoch": 1.75, "learning_rate": 0.0002, "loss": 0.2872, "step": 510 }, { "epoch": 1.79, "learning_rate": 0.0002, "loss": 0.2742, "step": 520 }, { "epoch": 1.82, "learning_rate": 0.0002, "loss": 0.2568, "step": 530 }, { "epoch": 1.85, "learning_rate": 0.0002, "loss": 0.2722, "step": 540 }, { "epoch": 1.89, "learning_rate": 0.0002, "loss": 0.2502, "step": 550 }, { "epoch": 1.92, "learning_rate": 0.0002, "loss": 0.2755, "step": 560 }, { "epoch": 1.96, "learning_rate": 0.0002, "loss": 0.2695, "step": 570 }, { "epoch": 1.99, "learning_rate": 0.0002, "loss": 0.281, "step": 580 }, { "epoch": 2.03, "learning_rate": 0.0002, "loss": 0.2127, "step": 590 }, { "epoch": 2.06, "learning_rate": 0.0002, "loss": 0.1943, "step": 600 }, { "epoch": 2.06, "eval_loss": 0.3318677246570587, "eval_runtime": 166.3325, "eval_samples_per_second": 6.012, "eval_steps_per_second": 3.006, "step": 600 }, { "epoch": 2.06, "mmlu_eval_accuracy": 0.463905720895551, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.5625, "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.8181818181818182, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.8365475967156825, "step": 600 } ], "max_steps": 5000, "num_train_epochs": 18, "total_flos": 2.8797865278160896e+16, "trial_name": null, "trial_params": null }