{ "best_metric": 0.754473865032196, "best_model_checkpoint": "experts/expert-16/checkpoint-1000", "epoch": 0.31685678073510776, "global_step": 1000, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.8339, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.8289, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.9041, "step": 30 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.8491, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.8151, "step": 50 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.79, "step": 60 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7835, "step": 70 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8831, "step": 80 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8607, "step": 90 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7876, "step": 100 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8031, "step": 110 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.8207, "step": 120 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.807, "step": 130 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.9262, "step": 140 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7964, "step": 150 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7879, "step": 160 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7587, "step": 170 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8091, "step": 180 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8615, "step": 190 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8672, "step": 200 }, { "epoch": 0.06, "eval_loss": 0.7779108881950378, "eval_runtime": 110.9863, "eval_samples_per_second": 9.01, "eval_steps_per_second": 4.505, "step": 200 }, { "epoch": 0.06, "mmlu_eval_accuracy": 0.4744171116325413, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.27, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.5868234255450824, "step": 200 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.8316, "step": 210 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.8454, "step": 220 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.8434, "step": 230 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.821, "step": 240 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.7893, "step": 250 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.8242, "step": 260 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.8128, "step": 270 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.8344, "step": 280 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.8338, "step": 290 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.7981, "step": 300 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.781, "step": 310 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.7717, "step": 320 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.767, "step": 330 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.7925, "step": 340 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.8226, "step": 350 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.7912, "step": 360 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.8093, "step": 370 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.7648, "step": 380 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.7866, "step": 390 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.7976, "step": 400 }, { "epoch": 0.13, "eval_loss": 0.7656086683273315, "eval_runtime": 110.9802, "eval_samples_per_second": 9.011, "eval_steps_per_second": 4.505, "step": 400 }, { "epoch": 0.13, "mmlu_eval_accuracy": 0.47124130233512024, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.4339068503199297, "step": 400 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.8182, "step": 410 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.8438, "step": 420 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8184, "step": 430 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8202, "step": 440 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8264, "step": 450 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.8384, "step": 460 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.8372, "step": 470 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.8072, "step": 480 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.8214, "step": 490 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.814, "step": 500 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.847, "step": 510 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.8444, "step": 520 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.8096, "step": 530 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.8496, "step": 540 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.7729, "step": 550 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.7826, "step": 560 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.7478, "step": 570 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.7953, "step": 580 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.7363, "step": 590 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.7971, "step": 600 }, { "epoch": 0.19, "eval_loss": 0.7616064548492432, "eval_runtime": 110.9404, "eval_samples_per_second": 9.014, "eval_steps_per_second": 4.507, "step": 600 }, { "epoch": 0.19, "mmlu_eval_accuracy": 0.4749850916074463, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.47619047619047616, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.26, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, "mmlu_eval_accuracy_professional_law": 0.3, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.5647042619341658, "step": 600 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.7936, "step": 610 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.7319, "step": 620 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.79, "step": 630 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.7806, "step": 640 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.8833, "step": 650 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.7711, "step": 660 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.8242, "step": 670 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.7948, "step": 680 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.7417, "step": 690 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.7275, "step": 700 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.8137, "step": 710 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.8568, "step": 720 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.802, "step": 730 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.8202, "step": 740 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.8077, "step": 750 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.814, "step": 760 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.7971, "step": 770 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.798, "step": 780 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.7806, "step": 790 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.8042, "step": 800 }, { "epoch": 0.25, "eval_loss": 0.7563537359237671, "eval_runtime": 111.023, "eval_samples_per_second": 9.007, "eval_steps_per_second": 4.504, "step": 800 }, { "epoch": 0.25, "mmlu_eval_accuracy": 0.4796267144005645, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4074074074074074, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.4866046660796157, "step": 800 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.8119, "step": 810 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.8156, "step": 820 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.8288, "step": 830 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.8008, "step": 840 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.8649, "step": 850 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.8242, "step": 860 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.8255, "step": 870 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.8467, "step": 880 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.8264, "step": 890 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.7833, "step": 900 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.8338, "step": 910 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.8062, "step": 920 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.8112, "step": 930 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.7469, "step": 940 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.7897, "step": 950 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.8081, "step": 960 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.7571, "step": 970 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.8161, "step": 980 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.7759, "step": 990 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.7417, "step": 1000 }, { "epoch": 0.32, "eval_loss": 0.754473865032196, "eval_runtime": 111.0233, "eval_samples_per_second": 9.007, "eval_steps_per_second": 4.504, "step": 1000 }, { "epoch": 0.32, "mmlu_eval_accuracy": 0.4749030525395577, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.2692307692307692, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.29411764705882354, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.5362318840579711, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.8421052631578947, "mmlu_loss": 1.596783688734468, "step": 1000 } ], "max_steps": 10000, "num_train_epochs": 4, "total_flos": 3.0458923208913715e+17, "trial_name": null, "trial_params": null }