{ "best_metric": 0.7779108881950378, "best_model_checkpoint": "experts/expert-16/checkpoint-200", "epoch": 0.06337135614702155, "global_step": 200, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.8339, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.8289, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.9041, "step": 30 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.8491, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.8151, "step": 50 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.79, "step": 60 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7835, "step": 70 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8831, "step": 80 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8607, "step": 90 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7876, "step": 100 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8031, "step": 110 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.8207, "step": 120 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.807, "step": 130 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.9262, "step": 140 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7964, "step": 150 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7879, "step": 160 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7587, "step": 170 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8091, "step": 180 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8615, "step": 190 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8672, "step": 200 }, { "epoch": 0.06, "eval_loss": 0.7779108881950378, "eval_runtime": 110.9863, "eval_samples_per_second": 9.01, "eval_steps_per_second": 4.505, "step": 200 }, { "epoch": 0.06, "mmlu_eval_accuracy": 0.4744171116325413, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.27, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.5868234255450824, "step": 200 } ], "max_steps": 10000, "num_train_epochs": 4, "total_flos": 6.125001405058253e+16, "trial_name": null, "trial_params": null }