--- base_model: VietAI/vit5-large library_name: transformers license: mit metrics: - sacrebleu tags: - generated_from_trainer model-index: - name: BaViT5_v2 results: [] --- # BaViT5_v2 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4562 - Sacrebleu: 15.4902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | |:-------------:|:-----:|:-----:|:---------------:|:---------:| | 0.5323 | 1.0 | 2966 | 0.4843 | 10.8807 | | 0.4426 | 2.0 | 5932 | 0.4266 | 13.2481 | | 0.3629 | 3.0 | 8898 | 0.4084 | 14.2709 | | 0.3321 | 4.0 | 11864 | 0.4032 | 14.8016 | | 0.286 | 5.0 | 14830 | 0.4061 | 15.1102 | | 0.2528 | 6.0 | 17796 | 0.4160 | 15.2808 | | 0.2235 | 7.0 | 20762 | 0.4270 | 15.4345 | | 0.2018 | 8.0 | 23728 | 0.4400 | 15.4360 | | 0.1856 | 9.0 | 26694 | 0.4562 | 15.4902 | | 0.1639 | 10.0 | 29660 | 0.4705 | 15.4167 | | 0.1565 | 11.0 | 32626 | 0.4886 | 15.4478 | | 0.1392 | 12.0 | 35592 | 0.5035 | 15.4189 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0