--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-base-finetuned-code-mixed-DS results: [] --- # xlm-roberta-base-finetuned-code-mixed-DS This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8266 - Accuracy: 0.6318 - Precision: 0.5781 - Recall: 0.5978 - F1: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.932923543227153e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0602 | 1.0 | 248 | 1.0280 | 0.5211 | 0.4095 | 0.4557 | 0.3912 | | 0.9741 | 1.99 | 496 | 0.9318 | 0.5533 | 0.4758 | 0.5002 | 0.4415 | | 0.8585 | 2.99 | 744 | 0.8585 | 0.6076 | 0.5539 | 0.5731 | 0.5353 | | 0.7293 | 3.98 | 992 | 0.8266 | 0.6318 | 0.5781 | 0.5978 | 0.5677 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1