--- tags: - generated_from_trainer model-index: - name: myBit-Llama2-jp-127M-3 results: [] --- # myBit-Llama2-jp-127M-3 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 13.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.8184 | 1.25 | 10 | 8.3355 | | 5.4327 | 2.5 | 20 | 7.6000 | | 5.0861 | 3.75 | 30 | 7.8126 | | 4.7586 | 5.0 | 40 | 7.5748 | | 4.4392 | 6.25 | 50 | 7.4509 | | 4.1938 | 7.5 | 60 | 7.3834 | | 4.0095 | 8.75 | 70 | 7.2750 | | 3.905 | 10.0 | 80 | 7.3800 | | 3.6536 | 11.25 | 90 | 7.4560 | | 3.3187 | 12.5 | 100 | 7.6310 | | 3.3315 | 13.75 | 110 | 8.0397 | | 2.9308 | 15.0 | 120 | 8.3902 | | 2.679 | 16.25 | 130 | 9.0364 | | 2.2896 | 17.5 | 140 | 9.8766 | | 1.8407 | 18.75 | 150 | 10.7682 | | 1.5081 | 20.0 | 160 | 11.7175 | | 0.9778 | 21.25 | 170 | 12.8239 | | 0.6572 | 22.5 | 180 | 13.6506 | | 0.5411 | 23.75 | 190 | 14.2579 | | 0.44 | 25.0 | 200 | 14.5732 | | 0.3283 | 26.25 | 210 | 15.1087 | | 0.2507 | 27.5 | 220 | 15.0569 | | 0.2044 | 28.75 | 230 | 15.1893 | | 0.1838 | 30.0 | 240 | 15.6291 | | 0.1626 | 31.25 | 250 | 15.4617 | | 0.1124 | 32.5 | 260 | 15.2738 | | 0.1011 | 33.75 | 270 | 15.2130 | | 0.0845 | 35.0 | 280 | 15.2749 | | 0.0852 | 36.25 | 290 | 15.3292 | | 0.1025 | 37.5 | 300 | 15.1574 | | 0.1075 | 38.75 | 310 | 15.1100 | | 0.079 | 40.0 | 320 | 14.8177 | | 0.0857 | 41.25 | 330 | 14.8609 | | 0.0629 | 42.5 | 340 | 14.6443 | | 0.0713 | 43.75 | 350 | 14.5514 | | 0.0594 | 45.0 | 360 | 14.6032 | | 0.0557 | 46.25 | 370 | 14.3489 | | 0.0554 | 47.5 | 380 | 14.3289 | | 0.0548 | 48.75 | 390 | 14.1991 | | 0.0528 | 50.0 | 400 | 14.1350 | | 0.0515 | 51.25 | 410 | 13.9952 | | 0.0529 | 52.5 | 420 | 13.9788 | | 0.0516 | 53.75 | 430 | 13.9438 | | 0.0506 | 55.0 | 440 | 13.8746 | | 0.049 | 56.25 | 450 | 13.7564 | | 0.0491 | 57.5 | 460 | 13.7900 | | 0.0493 | 58.75 | 470 | 13.6992 | | 0.0491 | 60.0 | 480 | 13.6421 | | 0.0497 | 61.25 | 490 | 13.6419 | | 0.0489 | 62.5 | 500 | 13.5448 | | 0.0504 | 63.75 | 510 | 13.5048 | | 0.0508 | 65.0 | 520 | 13.5077 | | 0.0488 | 66.25 | 530 | 13.5045 | | 0.0485 | 67.5 | 540 | 13.4404 | | 0.0493 | 68.75 | 550 | 13.4167 | | 0.0507 | 70.0 | 560 | 13.3758 | | 0.0491 | 71.25 | 570 | 13.3239 | | 0.0484 | 72.5 | 580 | 13.3139 | | 0.0472 | 73.75 | 590 | 13.2933 | | 0.0493 | 75.0 | 600 | 13.3105 | | 0.0475 | 76.25 | 610 | 13.2306 | | 0.0465 | 77.5 | 620 | 13.2378 | | 0.0474 | 78.75 | 630 | 13.2074 | | 0.0468 | 80.0 | 640 | 13.1871 | | 0.0466 | 81.25 | 650 | 13.2055 | | 0.0459 | 82.5 | 660 | 13.1327 | | 0.0466 | 83.75 | 670 | 13.1801 | | 0.0485 | 85.0 | 680 | 13.1610 | | 0.046 | 86.25 | 690 | 13.1439 | | 0.0467 | 87.5 | 700 | 13.1114 | | 0.0455 | 88.75 | 710 | 13.1123 | | 0.0456 | 90.0 | 720 | 13.0635 | | 0.0447 | 91.25 | 730 | 13.0997 | | 0.0449 | 92.5 | 740 | 13.0704 | | 0.0453 | 93.75 | 750 | 13.0531 | | 0.0451 | 95.0 | 760 | 13.0432 | | 0.0442 | 96.25 | 770 | 13.0311 | | 0.0444 | 97.5 | 780 | 13.0329 | | 0.0432 | 98.75 | 790 | 13.0491 | | 0.0442 | 100.0 | 800 | 13.0221 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2