--- license: apache-2.0 datasets: - NeelNanda/pile-10k language: - en --- ## Model Details This model is an int4 model with group_size 128 of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) generated by [intel/auto-round](https://github.com/intel/auto-round). Inference of this model is compatible with AutoGPTQ's Kernel. ### Reproduce the model Here is the sample command to reproduce the model ```bash git clone https://github.com/intel/auto-round cd auto-round/examples/language-modeling pip install -r requirements.txt python3 main.py \ --model_name microsoft/Phi-3-mini-4k-instruct \ --device 0 \ --group_size 128 \ --bits 4 \ --iters 1000 \ --deployment_device 'gpu' \ --disable_quanted_input \ --output_dir "./tmp_autoround" \ ``` ### Evaluate the model Install [lm-eval-harness 0.4.2](https://github.com/EleutherAI/lm-evaluation-harness.git) from source. ```bash lm_eval --model hf --model_args pretrained="Intel/Phi-3-mini-4k-instruct-int4-inc",autogptq=True,gptq_use_triton=True --device cuda:0 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu --batch_size 32 ``` | Metric | BF16 | INT4 | | -------------- | ------ | ------ | | Avg. | 0.6534 | 0.6509 | | mmlu | 0.6795 | 0.6662 | | lambada_openai | 0.6835 | 0.6814 | | hellaswag | 0.6050 | 0.5945 | | winogrande | 0.7364 | 0.7348 | | piqa | 0.8025 | 0.7933 | | truthfulqa_mc1 | 0.3917 | 0.3868 | | openbookqa | 0.3860 | 0.3860 | | boolq | 0.8621 | 0.8618 | | arc_easy | 0.8325 | 0.8333 | | arc_challenge | 0.5546 | 0.5708 | ## Caveats and Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. Here are a couple of useful links to learn more about Intel's AI software: * Intel Neural Compressor [link](https://github.com/intel/neural-compressor) * Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers) ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes. ## Cite @article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao}, journal={arXiv preprint arXiv:2309.05516}, year={2023} } [arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)