--- language: en license: mit tags: - text-classfication - int8 - IntelĀ® Neural Compressor - PostTrainingStatic - bert datasets: - mrpc - qnli metrics: - f1 --- # INT8 BERT base uncased finetuned QNLI ## Post-training static quantization ### PyTorch This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [IntelĀ® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [textattack/bert-base-uncased-QNLI](https://huggingface.co/textattack/bert-base-uncased-QNLI). #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.9081|0.9154| | **Model size (MB)** |133|438| #### Load with optimum: ```python from optimum.intel import INCModelForSequenceClassification model_id = "Intel/bert-base-uncased-QNLI-int8" int8_model = INCModelForSequenceClassification.from_pretrained(model_id) ```