--- language: - en license: apache-2.0 tags: - multiple-choice - int8 - IntelĀ® Neural Compressor - PostTrainingStatic datasets: - swag metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-swag-int8-static results: - task: name: Multiple-choice type: multiple-choice dataset: name: Swag type: swag metrics: - name: Accuracy type: accuracy value: 0.7838148474693298 --- # INT8 bert-base-uncased-finetuned-swag ### Post-training static quantization This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [IntelĀ® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [thyagosme/bert-base-uncased-finetuned-swag](https://huggingface.co/thyagosme/bert-base-uncased-finetuned-swag). The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104. The linear modules **bert.encoder.layer.2.output.dense, bert.encoder.layer.5.intermediate.dense, bert.encoder.layer.9.output.dense, bert.encoder.layer.10.output.dense** fall back to fp32 to meet the 1% relative accuracy loss. ### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-accuracy)** |0.7838|0.7915| | **Model size (MB)** |133|418| ### Load with optimum: ```python from optimum.intel import INCModelForMultipleChoice model_id = "Intel/bert-base-uncased-finetuned-swag-int8-static" int8_model = INCModelForMultipleChoice.from_pretrained(model_id) ```