--- license: apache-2.0 --- This model is a fine-tuned model for Chat based on [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) with **max_seq_lenght=2048** on the [instruction-dataset-for-neural-chat-v1](https://huggingface.co/datasets/Intel/instruction-dataset-for-neural-chat-v1), [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3) and [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) dataset. ## Model date Neural-chat-7b-v1.1 was trained on July 6, 2023. ## Evaluation We use the same evaluation metrics as [open_llm_leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) which uses [Eleuther AI Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/master), a unified framework to test generative language models on a large number of different evaluation tasks. | Model | Average ⬆️| ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️| TruthfulQA (MC) (0-s) ⬆️ | | --- | --- | --- | --- | --- | --- | |[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b)| 47.4 | 47.61 | 77.56 | 31 | 33.43 | | [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat) | **49.95** | 46.5 | 75.55 | 37.60 | 40.17 | | **Ours** | **51.41** | 50.09 | 76.69 | 38.79 | 40.07 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 3.0 ## Inference with transformers ```shell import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'Intel/neural-chat-7b-v1.1', trust_remote_code=True ) ``` ## Inference with INT8 Follow the instructions [link](https://github.com/intel/intel-extension-for-transformers/tree/main/examples/huggingface/pytorch/text-generation/quantization) to install the necessary dependencies. Use the below command to quantize the model using Intel Neural Compressor [link](https://github.com/intel/neural-compressor) and accelerate the inference. ```shell python run_generation.py \ --model Intel/neural-chat-7b-v1.1 \ --revision c8d4750ac8421303665d6ecc253950c69b56d324 \ --quantize \ --sq \ --alpha 0.95 \ --ipex ``` ## Organizations developing the model The NeuralChat team with members from Intel/SATG/AIA/AIPT. Core team members: Kaokao Lv, Xuhui Ren, Liang Lv, Wenxin Zhang, and Haihao Shen. ## Useful links * Intel Neural Compressor [link](https://github.com/intel/neural-compressor) * Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers) * Intel Extension for PyTorch [link](https://github.com/intel/intel-extension-for-pytorch)