2023-02-12 10:56:45,006 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'kokona': 0}, 'model_dir': './logs\\32k'} 2023-02-12 10:56:49,681 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1) 2023-02-12 10:56:50,100 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1) 2023-02-12 10:56:57,971 32k INFO Train Epoch: 1 [0%] 2023-02-12 10:56:57,972 32k INFO [5.542299270629883, 2.665985584259033, 25.682283401489258, 61.07982635498047, 23.713857650756836, 0, 0.0001] 2023-02-12 10:57:02,683 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth 2023-02-12 10:57:20,546 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth 2023-02-12 10:57:33,150 32k INFO ====> Epoch: 1 2023-02-12 10:57:44,832 32k INFO ====> Epoch: 2 2023-02-12 10:57:56,786 32k INFO ====> Epoch: 3 2023-02-12 10:58:08,535 32k INFO ====> Epoch: 4 2023-02-12 10:58:20,086 32k INFO ====> Epoch: 5 2023-02-12 10:58:31,611 32k INFO ====> Epoch: 6 2023-02-12 10:58:43,440 32k INFO ====> Epoch: 7 2023-02-12 10:58:55,041 32k INFO ====> Epoch: 8 2023-02-12 10:59:06,941 32k INFO ====> Epoch: 9 2023-02-12 10:59:18,739 32k INFO ====> Epoch: 10 2023-02-12 10:59:30,357 32k INFO ====> Epoch: 11 2023-02-12 10:59:41,930 32k INFO ====> Epoch: 12 2023-02-12 10:59:53,467 32k INFO ====> Epoch: 13 2023-02-12 11:00:05,013 32k INFO ====> Epoch: 14 2023-02-12 11:00:16,524 32k INFO ====> Epoch: 15 2023-02-12 11:00:28,026 32k INFO ====> Epoch: 16 2023-02-12 11:00:39,562 32k INFO ====> Epoch: 17 2023-02-12 11:00:51,286 32k INFO ====> Epoch: 18 2023-02-12 11:01:03,137 32k INFO ====> Epoch: 19 2023-02-12 11:01:15,001 32k INFO ====> Epoch: 20 2023-02-12 11:01:18,938 32k INFO Train Epoch: 21 [0%] 2023-02-12 11:01:18,938 32k INFO [2.2646379470825195, 2.8810572624206543, 21.821720123291016, 28.875865936279297, 1.5514765977859497, 200, 9.975029665246193e-05] 2023-02-12 11:01:27,081 32k INFO ====> Epoch: 21 2023-02-12 11:01:38,907 32k INFO ====> Epoch: 22 2023-02-12 11:01:50,710 32k INFO ====> Epoch: 23 2023-02-12 11:02:02,465 32k INFO ====> Epoch: 24 2023-02-12 11:02:14,323 32k INFO ====> Epoch: 25 2023-02-12 11:02:26,150 32k INFO ====> Epoch: 26 2023-02-12 11:02:37,975 32k INFO ====> Epoch: 27 2023-02-12 11:02:49,723 32k INFO ====> Epoch: 28 2023-02-12 11:03:01,503 32k INFO ====> Epoch: 29 2023-02-12 11:03:13,297 32k INFO ====> Epoch: 30 2023-02-12 11:03:25,140 32k INFO ====> Epoch: 31 2023-02-12 11:03:37,002 32k INFO ====> Epoch: 32 2023-02-12 11:03:48,848 32k INFO ====> Epoch: 33 2023-02-12 11:04:00,694 32k INFO ====> Epoch: 34 2023-02-12 11:04:12,600 32k INFO ====> Epoch: 35 2023-02-12 11:04:24,461 32k INFO ====> Epoch: 36 2023-02-12 11:04:36,311 32k INFO ====> Epoch: 37 2023-02-12 11:04:48,169 32k INFO ====> Epoch: 38 2023-02-12 11:05:00,013 32k INFO ====> Epoch: 39 2023-02-12 11:05:11,908 32k INFO ====> Epoch: 40 2023-02-12 11:05:15,875 32k INFO Train Epoch: 41 [0%] 2023-02-12 11:05:15,876 32k INFO [2.6570241451263428, 2.4744293689727783, 17.774166107177734, 24.35066032409668, 0.9465541839599609, 400, 9.950121682254156e-05] 2023-02-12 11:05:24,041 32k INFO ====> Epoch: 41 2023-02-12 11:05:35,917 32k INFO ====> Epoch: 42 2023-02-12 11:05:47,768 32k INFO ====> Epoch: 43 2023-02-12 11:05:59,533 32k INFO ====> Epoch: 44 2023-02-12 11:06:11,381 32k INFO ====> Epoch: 45 2023-02-12 11:06:23,242 32k INFO ====> Epoch: 46 2023-02-12 11:06:35,129 32k INFO ====> Epoch: 47 2023-02-12 11:06:47,035 32k INFO ====> Epoch: 48 2023-02-12 11:06:59,085 32k INFO ====> Epoch: 49 2023-02-12 11:07:10,938 32k INFO ====> Epoch: 50 2023-02-12 11:07:22,738 32k INFO ====> Epoch: 51 2023-02-12 11:07:34,563 32k INFO ====> Epoch: 52 2023-02-12 11:07:46,508 32k INFO ====> Epoch: 53 2023-02-12 11:07:58,340 32k INFO ====> Epoch: 54 2023-02-12 11:08:10,167 32k INFO ====> Epoch: 55 2023-02-12 11:08:22,002 32k INFO ====> Epoch: 56 2023-02-12 11:08:33,799 32k INFO ====> Epoch: 57 2023-02-12 11:08:45,645 32k INFO ====> Epoch: 58 2023-02-12 11:08:57,520 32k INFO ====> Epoch: 59 2023-02-12 11:09:09,331 32k INFO ====> Epoch: 60 2023-02-12 11:09:13,330 32k INFO Train Epoch: 61 [0%] 2023-02-12 11:09:13,331 32k INFO [2.2702250480651855, 2.8278610706329346, 21.250120162963867, 24.127765655517578, 1.1770193576812744, 600, 9.92527589532945e-05] 2023-02-12 11:09:21,468 32k INFO ====> Epoch: 61 2023-02-12 11:09:33,308 32k INFO ====> Epoch: 62 2023-02-12 11:09:45,117 32k INFO ====> Epoch: 63 2023-02-12 11:09:57,348 32k INFO ====> Epoch: 64 2023-02-12 11:10:09,164 32k INFO ====> Epoch: 65 2023-02-12 11:10:21,011 32k INFO ====> Epoch: 66 2023-02-12 11:10:32,891 32k INFO ====> Epoch: 67 2023-02-12 11:10:44,736 32k INFO ====> Epoch: 68 2023-02-12 11:10:56,547 32k INFO ====> Epoch: 69 2023-02-12 11:11:08,388 32k INFO ====> Epoch: 70 2023-02-12 11:11:20,256 32k INFO ====> Epoch: 71 2023-02-12 11:11:32,063 32k INFO ====> Epoch: 72 2023-02-12 11:11:43,887 32k INFO ====> Epoch: 73 2023-02-12 11:11:55,686 32k INFO ====> Epoch: 74 2023-02-12 11:12:07,497 32k INFO ====> Epoch: 75 2023-02-12 11:12:19,331 32k INFO ====> Epoch: 76 2023-02-12 11:12:31,152 32k INFO ====> Epoch: 77 2023-02-12 11:12:43,409 32k INFO ====> Epoch: 78 2023-02-12 11:12:55,162 32k INFO ====> Epoch: 79 2023-02-12 11:13:06,925 32k INFO ====> Epoch: 80 2023-02-12 11:13:11,149 32k INFO Train Epoch: 81 [0%] 2023-02-12 11:13:11,149 32k INFO [2.0064303874969482, 2.8905510902404785, 21.634431838989258, 27.9136905670166, 0.8381181359291077, 800, 9.900492149166423e-05] 2023-02-12 11:13:19,220 32k INFO ====> Epoch: 81 2023-02-12 11:13:31,164 32k INFO ====> Epoch: 82 2023-02-12 11:13:43,146 32k INFO ====> Epoch: 83 2023-02-12 11:13:55,115 32k INFO ====> Epoch: 84 2023-02-12 11:14:06,864 32k INFO ====> Epoch: 85 2023-02-12 11:14:18,651 32k INFO ====> Epoch: 86 2023-02-12 11:14:30,897 32k INFO ====> Epoch: 87 2023-02-12 11:14:42,625 32k INFO ====> Epoch: 88 2023-02-12 11:14:54,406 32k INFO ====> Epoch: 89 2023-02-12 11:15:06,167 32k INFO ====> Epoch: 90 2023-02-12 11:15:17,940 32k INFO ====> Epoch: 91 2023-02-12 11:15:29,747 32k INFO ====> Epoch: 92 2023-02-12 11:15:41,489 32k INFO ====> Epoch: 93 2023-02-12 11:15:53,219 32k INFO ====> Epoch: 94 2023-02-12 11:16:05,065 32k INFO ====> Epoch: 95 2023-02-12 11:16:16,788 32k INFO ====> Epoch: 96 2023-02-12 11:16:28,545 32k INFO ====> Epoch: 97 2023-02-12 11:16:40,278 32k INFO ====> Epoch: 98 2023-02-12 11:16:52,067 32k INFO ====> Epoch: 99 2023-02-12 11:17:03,841 32k INFO ====> Epoch: 100 2023-02-12 11:17:07,825 32k INFO Train Epoch: 101 [0%] 2023-02-12 11:17:07,825 32k INFO [2.1760404109954834, 2.7696290016174316, 19.465646743774414, 26.03284454345703, 0.6845554113388062, 1000, 9.875770288847208e-05] 2023-02-12 11:17:11,834 32k INFO Saving model and optimizer state at iteration 101 to ./logs\32k\G_1000.pth 2023-02-12 11:17:30,193 32k INFO Saving model and optimizer state at iteration 101 to ./logs\32k\D_1000.pth 2023-02-12 11:17:41,848 32k INFO ====> Epoch: 101 2023-02-12 11:17:53,661 32k INFO ====> Epoch: 102 2023-02-12 11:18:05,405 32k INFO ====> Epoch: 103 2023-02-12 11:18:17,193 32k INFO ====> Epoch: 104 2023-02-12 11:18:29,145 32k INFO ====> Epoch: 105 2023-02-12 11:18:41,026 32k INFO ====> Epoch: 106 2023-02-12 11:18:53,081 32k INFO ====> Epoch: 107 2023-02-12 11:19:04,984 32k INFO ====> Epoch: 108 2023-02-12 11:19:16,806 32k INFO ====> Epoch: 109 2023-02-12 11:19:28,539 32k INFO ====> Epoch: 110 2023-02-12 11:19:40,250 32k INFO ====> Epoch: 111 2023-02-12 11:19:52,079 32k INFO ====> Epoch: 112 2023-02-12 11:20:04,137 32k INFO ====> Epoch: 113 2023-02-12 11:20:16,221 32k INFO ====> Epoch: 114 2023-02-12 11:20:27,961 32k INFO ====> Epoch: 115 2023-02-12 11:20:39,811 32k INFO ====> Epoch: 116 2023-02-12 11:20:51,685 32k INFO ====> Epoch: 117 2023-02-12 11:21:03,450 32k INFO ====> Epoch: 118 2023-02-12 11:21:15,321 32k INFO ====> Epoch: 119 2023-02-12 11:21:27,585 32k INFO ====> Epoch: 120 2023-02-12 11:21:31,953 32k INFO Train Epoch: 121 [0%] 2023-02-12 11:21:31,954 32k INFO [2.2874832153320312, 2.9262359142303467, 16.725116729736328, 20.911989212036133, 1.0630743503570557, 1200, 9.851110159840781e-05] 2023-02-12 11:21:40,124 32k INFO ====> Epoch: 121 2023-02-12 11:21:51,979 32k INFO ====> Epoch: 122 2023-02-12 11:22:03,684 32k INFO ====> Epoch: 123 2023-02-12 11:22:15,443 32k INFO ====> Epoch: 124 2023-02-12 11:22:27,207 32k INFO ====> Epoch: 125 2023-02-12 11:22:39,081 32k INFO ====> Epoch: 126 2023-02-12 11:22:50,811 32k INFO ====> Epoch: 127 2023-02-12 11:23:02,623 32k INFO ====> Epoch: 128 2023-02-12 11:23:14,394 32k INFO ====> Epoch: 129 2023-02-12 11:23:26,133 32k INFO ====> Epoch: 130 2023-02-12 11:23:37,871 32k INFO ====> Epoch: 131 2023-02-12 11:23:49,646 32k INFO ====> Epoch: 132 2023-02-12 11:24:01,537 32k INFO ====> Epoch: 133 2023-02-12 11:24:13,431 32k INFO ====> Epoch: 134 2023-02-12 11:24:25,132 32k INFO ====> Epoch: 135 2023-02-12 11:24:36,919 32k INFO ====> Epoch: 136 2023-02-12 11:24:48,897 32k INFO ====> Epoch: 137 2023-02-12 11:25:00,870 32k INFO ====> Epoch: 138 2023-02-12 11:25:12,829 32k INFO ====> Epoch: 139 2023-02-12 11:25:24,618 32k INFO ====> Epoch: 140 2023-02-12 11:25:28,637 32k INFO Train Epoch: 141 [0%] 2023-02-12 11:25:28,638 32k INFO [2.105891704559326, 2.802135467529297, 18.534683227539062, 23.033945083618164, 0.7122542858123779, 1400, 9.826511608001993e-05] 2023-02-12 11:25:36,725 32k INFO ====> Epoch: 141 2023-02-12 11:25:48,480 32k INFO ====> Epoch: 142 2023-02-12 11:26:00,535 32k INFO ====> Epoch: 143 2023-02-12 11:26:12,581 32k INFO ====> Epoch: 144 2023-02-12 11:26:24,644 32k INFO ====> Epoch: 145 2023-02-12 11:26:36,422 32k INFO ====> Epoch: 146 2023-02-12 11:26:48,474 32k INFO ====> Epoch: 147 2023-02-12 11:27:00,575 32k INFO ====> Epoch: 148 2023-02-12 11:27:12,318 32k INFO ====> Epoch: 149 2023-02-12 11:27:24,125 32k INFO ====> Epoch: 150 2023-02-12 11:27:35,921 32k INFO ====> Epoch: 151 2023-02-12 11:27:47,698 32k INFO ====> Epoch: 152 2023-02-12 11:27:59,449 32k INFO ====> Epoch: 153 2023-02-12 11:28:11,180 32k INFO ====> Epoch: 154 2023-02-12 11:28:23,312 32k INFO ====> Epoch: 155 2023-02-12 11:28:35,503 32k INFO ====> Epoch: 156 2023-02-12 11:28:47,439 32k INFO ====> Epoch: 157 2023-02-12 11:28:59,318 32k INFO ====> Epoch: 158 2023-02-12 11:29:11,184 32k INFO ====> Epoch: 159 2023-02-12 11:29:23,070 32k INFO ====> Epoch: 160 2023-02-12 11:29:27,061 32k INFO Train Epoch: 161 [0%] 2023-02-12 11:29:27,061 32k INFO [2.12371826171875, 2.916212320327759, 16.768640518188477, 23.12175178527832, 0.5789794921875, 1600, 9.801974479570593e-05] 2023-02-12 11:29:35,217 32k INFO ====> Epoch: 161 2023-02-12 11:29:47,083 32k INFO ====> Epoch: 162 2023-02-12 11:29:58,968 32k INFO ====> Epoch: 163 2023-02-12 11:30:11,007 32k INFO ====> Epoch: 164 2023-02-12 11:30:22,794 32k INFO ====> Epoch: 165 2023-02-12 11:30:34,605 32k INFO ====> Epoch: 166 2023-02-12 11:30:46,411 32k INFO ====> Epoch: 167 2023-02-12 11:30:58,244 32k INFO ====> Epoch: 168 2023-02-12 11:31:10,094 32k INFO ====> Epoch: 169 2023-02-12 11:31:21,918 32k INFO ====> Epoch: 170 2023-02-12 11:31:33,722 32k INFO ====> Epoch: 171 2023-02-12 11:31:45,581 32k INFO ====> Epoch: 172 2023-02-12 11:31:57,450 32k INFO ====> Epoch: 173 2023-02-12 11:32:09,314 32k INFO ====> Epoch: 174 2023-02-12 11:32:21,340 32k INFO ====> Epoch: 175 2023-02-12 11:32:33,599 32k INFO ====> Epoch: 176 2023-02-12 11:32:45,619 32k INFO ====> Epoch: 177 2023-02-12 11:32:57,591 32k INFO ====> Epoch: 178 2023-02-12 11:33:09,508 32k INFO ====> Epoch: 179 2023-02-12 11:33:24,067 32k INFO ====> Epoch: 180 2023-02-12 11:33:28,651 32k INFO Train Epoch: 181 [0%] 2023-02-12 11:33:28,651 32k INFO [2.2422454357147217, 2.668048143386841, 21.7828311920166, 24.486221313476562, 0.616005539894104, 1800, 9.777498621170277e-05] 2023-02-12 11:33:40,856 32k INFO ====> Epoch: 181 2023-02-12 11:33:55,025 32k INFO ====> Epoch: 182 2023-02-12 11:34:07,656 32k INFO ====> Epoch: 183 2023-02-12 11:34:20,021 32k INFO ====> Epoch: 184 2023-02-12 11:34:32,365 32k INFO ====> Epoch: 185 2023-02-12 11:34:48,941 32k INFO ====> Epoch: 186 2023-02-12 11:35:01,259 32k INFO ====> Epoch: 187 2023-02-12 11:35:16,591 32k INFO ====> Epoch: 188 2023-02-12 11:35:29,032 32k INFO ====> Epoch: 189 2023-02-12 11:35:41,850 32k INFO ====> Epoch: 190 2023-02-12 11:35:54,858 32k INFO ====> Epoch: 191 2023-02-12 11:36:06,921 32k INFO ====> Epoch: 192 2023-02-12 11:36:18,922 32k INFO ====> Epoch: 193 2023-02-12 11:36:32,051 32k INFO ====> Epoch: 194 2023-02-12 11:36:44,856 32k INFO ====> Epoch: 195 2023-02-12 11:36:56,694 32k INFO ====> Epoch: 196 2023-02-12 11:37:09,214 32k INFO ====> Epoch: 197 2023-02-12 11:37:22,723 32k INFO ====> Epoch: 198 2023-02-12 11:37:36,261 32k INFO ====> Epoch: 199 2023-02-12 11:37:50,831 32k INFO ====> Epoch: 200 2023-02-12 11:37:55,521 32k INFO Train Epoch: 201 [0%] 2023-02-12 11:37:55,522 32k INFO [2.0545427799224854, 2.9191207885742188, 18.014545440673828, 22.382339477539062, 1.145055890083313, 2000, 9.753083879807726e-05] 2023-02-12 11:37:59,920 32k INFO Saving model and optimizer state at iteration 201 to ./logs\32k\G_2000.pth 2023-02-12 11:38:16,144 32k INFO Saving model and optimizer state at iteration 201 to ./logs\32k\D_2000.pth 2023-02-12 11:38:30,348 32k INFO ====> Epoch: 201 2023-02-12 11:38:43,817 32k INFO ====> Epoch: 202 2023-02-12 11:38:57,290 32k INFO ====> Epoch: 203 2023-02-12 11:39:10,783 32k INFO ====> Epoch: 204 2023-02-12 11:39:24,353 32k INFO ====> Epoch: 205 2023-02-12 11:39:38,012 32k INFO ====> Epoch: 206 2023-02-12 11:39:51,464 32k INFO ====> Epoch: 207 2023-02-12 11:40:04,919 32k INFO ====> Epoch: 208 2023-02-12 11:40:18,279 32k INFO ====> Epoch: 209 2023-02-12 11:40:31,783 32k INFO ====> Epoch: 210 2023-02-12 11:40:45,205 32k INFO ====> Epoch: 211 2023-02-12 11:40:58,570 32k INFO ====> Epoch: 212 2023-02-12 11:41:11,970 32k INFO ====> Epoch: 213 2023-02-12 11:41:25,491 32k INFO ====> Epoch: 214 2023-02-12 11:41:38,900 32k INFO ====> Epoch: 215 2023-02-12 11:41:52,375 32k INFO ====> Epoch: 216 2023-02-12 11:42:05,789 32k INFO ====> Epoch: 217 2023-02-12 11:42:19,197 32k INFO ====> Epoch: 218 2023-02-12 11:42:32,682 32k INFO ====> Epoch: 219 2023-02-12 11:42:46,135 32k INFO ====> Epoch: 220 2023-02-12 11:42:50,366 32k INFO Train Epoch: 221 [0%] 2023-02-12 11:42:50,367 32k INFO [2.090278148651123, 2.901176691055298, 18.832168579101562, 21.155336380004883, 0.886482298374176, 2200, 9.728730102871649e-05] 2023-02-12 11:42:59,902 32k INFO ====> Epoch: 221 2023-02-12 11:43:13,295 32k INFO ====> Epoch: 222 2023-02-12 11:43:26,687 32k INFO ====> Epoch: 223 2023-02-12 11:43:40,183 32k INFO ====> Epoch: 224 2023-02-12 11:43:53,653 32k INFO ====> Epoch: 225 2023-02-12 11:44:07,139 32k INFO ====> Epoch: 226 2023-02-12 11:44:20,539 32k INFO ====> Epoch: 227 2023-02-12 11:44:34,040 32k INFO ====> Epoch: 228 2023-02-12 11:44:47,520 32k INFO ====> Epoch: 229 2023-02-12 11:45:00,992 32k INFO ====> Epoch: 230 2023-02-12 11:45:14,510 32k INFO ====> Epoch: 231 2023-02-12 11:45:27,845 32k INFO ====> Epoch: 232 2023-02-12 11:45:41,334 32k INFO ====> Epoch: 233 2023-02-12 11:45:54,721 32k INFO ====> Epoch: 234 2023-02-12 11:46:08,166 32k INFO ====> Epoch: 235 2023-02-12 11:46:21,620 32k INFO ====> Epoch: 236 2023-02-12 11:46:35,080 32k INFO ====> Epoch: 237 2023-02-12 11:46:48,502 32k INFO ====> Epoch: 238 2023-02-12 11:47:01,777 32k INFO ====> Epoch: 239 2023-02-12 11:47:15,303 32k INFO ====> Epoch: 240 2023-02-12 11:47:19,521 32k INFO Train Epoch: 241 [0%] 2023-02-12 11:47:19,522 32k INFO [2.164433240890503, 2.935574531555176, 19.110923767089844, 23.871938705444336, 0.7375960350036621, 2400, 9.704437138131832e-05] 2023-02-12 11:47:29,199 32k INFO ====> Epoch: 241 2023-02-12 11:47:42,638 32k INFO ====> Epoch: 242 2023-02-12 11:47:56,029 32k INFO ====> Epoch: 243 2023-02-12 11:48:09,546 32k INFO ====> Epoch: 244 2023-02-12 11:48:23,026 32k INFO ====> Epoch: 245 2023-02-12 11:48:36,437 32k INFO ====> Epoch: 246 2023-02-12 11:48:49,748 32k INFO ====> Epoch: 247 2023-02-12 11:49:03,238 32k INFO ====> Epoch: 248 2023-02-12 11:49:16,702 32k INFO ====> Epoch: 249 2023-02-12 11:49:30,243 32k INFO ====> Epoch: 250 2023-02-12 11:49:43,768 32k INFO ====> Epoch: 251 2023-02-12 11:49:57,209 32k INFO ====> Epoch: 252 2023-02-12 11:50:10,687 32k INFO ====> Epoch: 253 2023-02-12 11:50:24,149 32k INFO ====> Epoch: 254 2023-02-12 11:50:37,717 32k INFO ====> Epoch: 255 2023-02-12 11:50:51,220 32k INFO ====> Epoch: 256 2023-02-12 11:51:04,603 32k INFO ====> Epoch: 257 2023-02-12 11:51:18,055 32k INFO ====> Epoch: 258 2023-02-12 11:51:31,538 32k INFO ====> Epoch: 259 2023-02-12 11:51:45,012 32k INFO ====> Epoch: 260 2023-02-12 11:51:49,168 32k INFO Train Epoch: 261 [0%] 2023-02-12 11:51:49,168 32k INFO [2.2391364574432373, 2.84315824508667, 20.665061950683594, 24.793420791625977, 1.078212857246399, 2600, 9.680204833738185e-05] 2023-02-12 11:51:58,658 32k INFO ====> Epoch: 261 2023-02-12 11:52:12,032 32k INFO ====> Epoch: 262 2023-02-12 11:52:25,558 32k INFO ====> Epoch: 263 2023-02-12 11:52:38,852 32k INFO ====> Epoch: 264 2023-02-12 11:52:52,345 32k INFO ====> Epoch: 265 2023-02-12 11:53:05,738 32k INFO ====> Epoch: 266 2023-02-12 11:53:19,237 32k INFO ====> Epoch: 267 2023-02-12 11:53:32,698 32k INFO ====> Epoch: 268 2023-02-12 11:53:46,167 32k INFO ====> Epoch: 269 2023-02-12 11:53:59,556 32k INFO ====> Epoch: 270 2023-02-12 11:54:12,926 32k INFO ====> Epoch: 271 2023-02-12 11:54:26,432 32k INFO ====> Epoch: 272 2023-02-12 11:54:39,713 32k INFO ====> Epoch: 273 2023-02-12 11:54:53,215 32k INFO ====> Epoch: 274 2023-02-12 11:55:06,750 32k INFO ====> Epoch: 275 2023-02-12 11:55:20,235 32k INFO ====> Epoch: 276 2023-02-12 11:55:33,747 32k INFO ====> Epoch: 277 2023-02-12 11:55:47,270 32k INFO ====> Epoch: 278 2023-02-12 11:56:00,654 32k INFO ====> Epoch: 279 2023-02-12 11:56:14,083 32k INFO ====> Epoch: 280 2023-02-12 11:56:18,314 32k INFO Train Epoch: 281 [0%] 2023-02-12 11:56:18,314 32k INFO [2.089102268218994, 3.0276288986206055, 18.402175903320312, 22.983383178710938, 0.877465009689331, 2800, 9.656033038219798e-05] 2023-02-12 11:56:27,805 32k INFO ====> Epoch: 281 2023-02-12 11:56:41,247 32k INFO ====> Epoch: 282 2023-02-12 11:56:54,716 32k INFO ====> Epoch: 283 2023-02-12 11:57:08,217 32k INFO ====> Epoch: 284 2023-02-12 11:57:21,621 32k INFO ====> Epoch: 285 2023-02-12 11:57:35,076 32k INFO ====> Epoch: 286 2023-02-12 11:57:48,581 32k INFO ====> Epoch: 287 2023-02-12 11:58:02,183 32k INFO ====> Epoch: 288 2023-02-12 11:58:15,702 32k INFO ====> Epoch: 289 2023-02-12 11:58:29,205 32k INFO ====> Epoch: 290 2023-02-12 11:58:42,696 32k INFO ====> Epoch: 291 2023-02-12 11:58:56,116 32k INFO ====> Epoch: 292 2023-02-12 11:59:09,523 32k INFO ====> Epoch: 293 2023-02-12 11:59:22,955 32k INFO ====> Epoch: 294 2023-02-12 11:59:36,318 32k INFO ====> Epoch: 295 2023-02-12 11:59:49,639 32k INFO ====> Epoch: 296 2023-02-12 12:00:01,466 32k INFO ====> Epoch: 297 2023-02-12 12:00:13,257 32k INFO ====> Epoch: 298 2023-02-12 12:00:25,042 32k INFO ====> Epoch: 299 2023-02-12 12:00:36,786 32k INFO ====> Epoch: 300 2023-02-12 12:00:40,787 32k INFO Train Epoch: 301 [0%] 2023-02-12 12:00:40,788 32k INFO [2.2152934074401855, 2.5910556316375732, 20.002161026000977, 23.172073364257812, 0.6147266626358032, 3000, 9.631921600483981e-05] 2023-02-12 12:00:44,718 32k INFO Saving model and optimizer state at iteration 301 to ./logs\32k\G_3000.pth 2023-02-12 12:00:59,794 32k INFO Saving model and optimizer state at iteration 301 to ./logs\32k\D_3000.pth 2023-02-12 12:01:11,669 32k INFO ====> Epoch: 301 2023-02-12 12:01:23,534 32k INFO ====> Epoch: 302 2023-02-12 12:01:35,415 32k INFO ====> Epoch: 303 2023-02-12 12:01:47,201 32k INFO ====> Epoch: 304 2023-02-12 12:01:58,984 32k INFO ====> Epoch: 305 2023-02-12 12:02:10,709 32k INFO ====> Epoch: 306 2023-02-12 12:02:22,474 32k INFO ====> Epoch: 307 2023-02-12 12:02:34,219 32k INFO ====> Epoch: 308 2023-02-12 12:02:46,062 32k INFO ====> Epoch: 309 2023-02-12 12:02:57,818 32k INFO ====> Epoch: 310 2023-02-12 12:03:09,564 32k INFO ====> Epoch: 311 2023-02-12 12:03:21,340 32k INFO ====> Epoch: 312 2023-02-12 12:03:33,144 32k INFO ====> Epoch: 313 2023-02-12 12:03:44,939 32k INFO ====> Epoch: 314 2023-02-12 12:03:56,791 32k INFO ====> Epoch: 315 2023-02-12 12:04:08,553 32k INFO ====> Epoch: 316 2023-02-12 12:04:20,303 32k INFO ====> Epoch: 317 2023-02-12 12:04:32,051 32k INFO ====> Epoch: 318 2023-02-12 12:04:43,783 32k INFO ====> Epoch: 319 2023-02-12 12:04:55,571 32k INFO ====> Epoch: 320 2023-02-12 12:04:59,569 32k INFO Train Epoch: 321 [0%] 2023-02-12 12:04:59,569 32k INFO [2.1514697074890137, 2.755525588989258, 20.714019775390625, 23.780593872070312, 0.9267673492431641, 3200, 9.60787036981533e-05] 2023-02-12 12:05:07,741 32k INFO ====> Epoch: 321 2023-02-12 12:05:19,499 32k INFO ====> Epoch: 322 2023-02-12 12:05:31,230 32k INFO ====> Epoch: 323 2023-02-12 12:05:43,319 32k INFO ====> Epoch: 324 2023-02-12 12:05:55,102 32k INFO ====> Epoch: 325 2023-02-12 12:06:06,864 32k INFO ====> Epoch: 326 2023-02-12 12:06:18,598 32k INFO ====> Epoch: 327 2023-02-12 12:06:30,332 32k INFO ====> Epoch: 328 2023-02-12 12:06:42,124 32k INFO ====> Epoch: 329 2023-02-12 12:06:53,858 32k INFO ====> Epoch: 330 2023-02-12 12:07:05,636 32k INFO ====> Epoch: 331 2023-02-12 12:07:17,420 32k INFO ====> Epoch: 332 2023-02-12 12:07:29,158 32k INFO ====> Epoch: 333 2023-02-12 12:07:40,909 32k INFO ====> Epoch: 334 2023-02-12 12:07:52,617 32k INFO ====> Epoch: 335 2023-02-12 12:08:04,417 32k INFO ====> Epoch: 336 2023-02-12 12:08:16,164 32k INFO ====> Epoch: 337 2023-02-12 12:08:27,982 32k INFO ====> Epoch: 338 2023-02-12 12:08:39,744 32k INFO ====> Epoch: 339 2023-02-12 12:08:51,555 32k INFO ====> Epoch: 340 2023-02-12 12:08:55,574 32k INFO Train Epoch: 341 [0%] 2023-02-12 12:08:55,575 32k INFO [1.99088454246521, 3.1391944885253906, 19.213172912597656, 24.016939163208008, 0.2595030963420868, 3400, 9.583879195874782e-05] 2023-02-12 12:09:03,708 32k INFO ====> Epoch: 341 2023-02-12 12:09:15,477 32k INFO ====> Epoch: 342 2023-02-12 12:09:27,383 32k INFO ====> Epoch: 343 2023-02-12 12:09:39,115 32k INFO ====> Epoch: 344 2023-02-12 12:09:50,910 32k INFO ====> Epoch: 345 2023-02-12 12:10:02,683 32k INFO ====> Epoch: 346 2023-02-12 12:10:14,426 32k INFO ====> Epoch: 347 2023-02-12 12:10:26,251 32k INFO ====> Epoch: 348 2023-02-12 12:10:38,029 32k INFO ====> Epoch: 349 2023-02-12 12:10:49,778 32k INFO ====> Epoch: 350 2023-02-12 12:11:01,528 32k INFO ====> Epoch: 351 2023-02-12 12:11:13,290 32k INFO ====> Epoch: 352 2023-02-12 12:11:25,082 32k INFO ====> Epoch: 353 2023-02-12 12:11:36,872 32k INFO ====> Epoch: 354 2023-02-12 12:11:48,625 32k INFO ====> Epoch: 355 2023-02-12 12:12:00,416 32k INFO ====> Epoch: 356 2023-02-12 12:12:12,204 32k INFO ====> Epoch: 357 2023-02-12 12:12:23,984 32k INFO ====> Epoch: 358 2023-02-12 12:12:35,736 32k INFO ====> Epoch: 359 2023-02-12 12:12:47,487 32k INFO ====> Epoch: 360 2023-02-12 12:12:51,460 32k INFO Train Epoch: 361 [0%] 2023-02-12 12:12:51,460 32k INFO [2.2517716884613037, 3.1543078422546387, 17.141902923583984, 21.33304786682129, 0.61845463514328, 3600, 9.559947928698674e-05] 2023-02-12 12:12:59,561 32k INFO ====> Epoch: 361 2023-02-12 12:13:11,307 32k INFO ====> Epoch: 362 2023-02-12 12:13:23,047 32k INFO ====> Epoch: 363 2023-02-12 12:13:34,932 32k INFO ====> Epoch: 364 2023-02-12 12:13:46,693 32k INFO ====> Epoch: 365 2023-02-12 12:13:58,434 32k INFO ====> Epoch: 366 2023-02-12 12:14:10,215 32k INFO ====> Epoch: 367 2023-02-12 12:14:21,979 32k INFO ====> Epoch: 368 2023-02-12 12:14:33,709 32k INFO ====> Epoch: 369 2023-02-12 12:14:45,488 32k INFO ====> Epoch: 370 2023-02-12 12:14:57,284 32k INFO ====> Epoch: 371 2023-02-12 12:15:09,114 32k INFO ====> Epoch: 372 2023-02-12 12:15:20,878 32k INFO ====> Epoch: 373 2023-02-12 12:15:32,664 32k INFO ====> Epoch: 374 2023-02-12 12:15:44,442 32k INFO ====> Epoch: 375 2023-02-12 12:15:56,221 32k INFO ====> Epoch: 376 2023-02-12 12:16:07,957 32k INFO ====> Epoch: 377 2023-02-12 12:16:19,738 32k INFO ====> Epoch: 378 2023-02-12 12:16:31,483 32k INFO ====> Epoch: 379 2023-02-12 12:16:43,206 32k INFO ====> Epoch: 380 2023-02-12 12:16:47,249 32k INFO Train Epoch: 381 [0%] 2023-02-12 12:16:47,249 32k INFO [1.902297854423523, 3.237359046936035, 22.288528442382812, 24.29983139038086, 0.8269789218902588, 3800, 9.536076418697815e-05] 2023-02-12 12:16:55,364 32k INFO ====> Epoch: 381 2023-02-12 12:17:07,188 32k INFO ====> Epoch: 382 2023-02-12 12:17:18,981 32k INFO ====> Epoch: 383 2023-02-12 12:17:30,762 32k INFO ====> Epoch: 384 2023-02-12 12:17:42,525 32k INFO ====> Epoch: 385 2023-02-12 12:17:54,323 32k INFO ====> Epoch: 386 2023-02-12 12:18:06,103 32k INFO ====> Epoch: 387 2023-02-12 12:18:17,936 32k INFO ====> Epoch: 388 2023-02-12 12:18:29,690 32k INFO ====> Epoch: 389 2023-02-12 12:18:41,464 32k INFO ====> Epoch: 390 2023-02-12 12:18:53,254 32k INFO ====> Epoch: 391 2023-02-12 12:19:05,026 32k INFO ====> Epoch: 392 2023-02-12 12:19:16,809 32k INFO ====> Epoch: 393 2023-02-12 12:19:28,560 32k INFO ====> Epoch: 394 2023-02-12 12:19:40,325 32k INFO ====> Epoch: 395 2023-02-12 12:19:52,085 32k INFO ====> Epoch: 396 2023-02-12 12:20:03,833 32k INFO ====> Epoch: 397 2023-02-12 12:20:15,623 32k INFO ====> Epoch: 398 2023-02-12 12:20:27,466 32k INFO ====> Epoch: 399 2023-02-12 12:20:39,260 32k INFO ====> Epoch: 400 2023-02-12 12:20:43,250 32k INFO Train Epoch: 401 [0%] 2023-02-12 12:20:43,251 32k INFO [1.916421890258789, 2.9261367321014404, 19.459447860717773, 23.159435272216797, 0.879202127456665, 4000, 9.512264516656537e-05] 2023-02-12 12:20:47,146 32k INFO Saving model and optimizer state at iteration 401 to ./logs\32k\G_4000.pth 2023-02-12 12:21:05,039 32k INFO Saving model and optimizer state at iteration 401 to ./logs\32k\D_4000.pth 2023-02-12 12:21:16,566 32k INFO ====> Epoch: 401 2023-02-12 12:21:28,993 32k INFO ====> Epoch: 402 2023-02-12 12:21:40,713 32k INFO ====> Epoch: 403 2023-02-12 12:21:52,866 32k INFO ====> Epoch: 404 2023-02-12 12:22:04,667 32k INFO ====> Epoch: 405 2023-02-12 12:22:16,847 32k INFO ====> Epoch: 406 2023-02-12 12:22:28,694 32k INFO ====> Epoch: 407 2023-02-12 12:22:40,471 32k INFO ====> Epoch: 408 2023-02-12 12:22:52,246 32k INFO ====> Epoch: 409 2023-02-12 12:23:04,023 32k INFO ====> Epoch: 410 2023-02-12 12:23:15,769 32k INFO ====> Epoch: 411 2023-02-12 12:23:27,569 32k INFO ====> Epoch: 412 2023-02-12 12:23:39,778 32k INFO ====> Epoch: 413 2023-02-12 12:23:51,508 32k INFO ====> Epoch: 414 2023-02-12 12:24:03,294 32k INFO ====> Epoch: 415 2023-02-12 12:24:15,082 32k INFO ====> Epoch: 416 2023-02-12 12:24:27,284 32k INFO ====> Epoch: 417 2023-02-12 12:24:39,073 32k INFO ====> Epoch: 418 2023-02-12 12:24:50,839 32k INFO ====> Epoch: 419 2023-02-12 12:25:02,582 32k INFO ====> Epoch: 420 2023-02-12 12:25:06,572 32k INFO Train Epoch: 421 [0%] 2023-02-12 12:25:06,573 32k INFO [2.0300867557525635, 3.2276406288146973, 19.96863555908203, 20.07271957397461, 0.639214277267456, 4200, 9.488512073731768e-05] 2023-02-12 12:25:14,652 32k INFO ====> Epoch: 421 2023-02-12 12:25:26,422 32k INFO ====> Epoch: 422 2023-02-12 12:25:38,134 32k INFO ====> Epoch: 423 2023-02-12 12:25:49,935 32k INFO ====> Epoch: 424 2023-02-12 12:26:01,638 32k INFO ====> Epoch: 425 2023-02-12 12:26:13,367 32k INFO ====> Epoch: 426 2023-02-12 12:26:25,088 32k INFO ====> Epoch: 427 2023-02-12 12:26:36,848 32k INFO ====> Epoch: 428 2023-02-12 12:26:48,599 32k INFO ====> Epoch: 429 2023-02-12 12:27:00,444 32k INFO ====> Epoch: 430 2023-02-12 12:27:23,454 32k INFO ====> Epoch: 431 2023-02-12 12:27:35,189 32k INFO ====> Epoch: 432 2023-02-12 12:27:46,915 32k INFO ====> Epoch: 433 2023-02-12 12:27:58,643 32k INFO ====> Epoch: 434 2023-02-12 12:28:10,403 32k INFO ====> Epoch: 435 2023-02-12 12:28:22,152 32k INFO ====> Epoch: 436 2023-02-12 12:28:33,926 32k INFO ====> Epoch: 437 2023-02-12 12:28:45,689 32k INFO ====> Epoch: 438 2023-02-12 12:28:57,454 32k INFO ====> Epoch: 439 2023-02-12 12:29:09,231 32k INFO ====> Epoch: 440 2023-02-12 12:29:13,237 32k INFO Train Epoch: 441 [0%] 2023-02-12 12:29:13,237 32k INFO [2.1176722049713135, 2.8234519958496094, 18.18788719177246, 20.257896423339844, 0.7644371390342712, 4400, 9.464818941452107e-05] 2023-02-12 12:29:21,388 32k INFO ====> Epoch: 441 2023-02-12 12:29:33,168 32k INFO ====> Epoch: 442 2023-02-12 12:29:44,942 32k INFO ====> Epoch: 443 2023-02-12 12:29:56,685 32k INFO ====> Epoch: 444 2023-02-12 12:30:08,435 32k INFO ====> Epoch: 445 2023-02-12 12:30:20,199 32k INFO ====> Epoch: 446 2023-02-12 12:30:31,966 32k INFO ====> Epoch: 447 2023-02-12 12:30:43,676 32k INFO ====> Epoch: 448 2023-02-12 12:30:55,419 32k INFO ====> Epoch: 449 2023-02-12 12:31:07,197 32k INFO ====> Epoch: 450 2023-02-12 12:31:18,959 32k INFO ====> Epoch: 451 2023-02-12 12:31:30,727 32k INFO ====> Epoch: 452 2023-02-12 12:31:42,495 32k INFO ====> Epoch: 453 2023-02-12 12:31:54,269 32k INFO ====> Epoch: 454 2023-02-12 12:32:06,060 32k INFO ====> Epoch: 455 2023-02-12 12:32:17,840 32k INFO ====> Epoch: 456 2023-02-12 12:32:29,603 32k INFO ====> Epoch: 457 2023-02-12 12:32:41,333 32k INFO ====> Epoch: 458 2023-02-12 12:32:53,089 32k INFO ====> Epoch: 459 2023-02-12 12:33:04,871 32k INFO ====> Epoch: 460 2023-02-12 12:33:08,834 32k INFO Train Epoch: 461 [0%] 2023-02-12 12:33:08,835 32k INFO [1.9140055179595947, 3.1123974323272705, 19.443544387817383, 22.496755599975586, 0.9423781633377075, 4600, 9.441184971716882e-05] 2023-02-12 12:33:16,924 32k INFO ====> Epoch: 461 2023-02-12 12:33:28,664 32k INFO ====> Epoch: 462 2023-02-12 12:33:40,492 32k INFO ====> Epoch: 463 2023-02-12 12:33:52,212 32k INFO ====> Epoch: 464 2023-02-12 12:34:03,966 32k INFO ====> Epoch: 465 2023-02-12 12:34:15,726 32k INFO ====> Epoch: 466 2023-02-12 12:34:27,509 32k INFO ====> Epoch: 467 2023-02-12 12:34:39,331 32k INFO ====> Epoch: 468 2023-02-12 12:34:51,135 32k INFO ====> Epoch: 469 2023-02-12 12:35:03,015 32k INFO ====> Epoch: 470 2023-02-12 12:35:14,748 32k INFO ====> Epoch: 471 2023-02-12 12:35:26,518 32k INFO ====> Epoch: 472 2023-02-12 12:35:38,266 32k INFO ====> Epoch: 473 2023-02-12 12:35:50,042 32k INFO ====> Epoch: 474 2023-02-12 12:36:01,803 32k INFO ====> Epoch: 475 2023-02-12 12:36:13,496 32k INFO ====> Epoch: 476 2023-02-12 12:36:25,233 32k INFO ====> Epoch: 477 2023-02-12 12:36:37,014 32k INFO ====> Epoch: 478 2023-02-12 12:36:48,820 32k INFO ====> Epoch: 479 2023-02-12 12:37:00,559 32k INFO ====> Epoch: 480 2023-02-12 12:37:04,548 32k INFO Train Epoch: 481 [0%] 2023-02-12 12:37:04,548 32k INFO [1.9500179290771484, 3.4552860260009766, 20.399255752563477, 20.194480895996094, 0.5144003629684448, 4800, 9.417610016795242e-05] 2023-02-12 12:37:12,632 32k INFO ====> Epoch: 481 2023-02-12 12:37:24,421 32k INFO ====> Epoch: 482 2023-02-12 12:37:36,228 32k INFO ====> Epoch: 483 2023-02-12 12:37:48,054 32k INFO ====> Epoch: 484 2023-02-12 12:37:59,831 32k INFO ====> Epoch: 485 2023-02-12 12:38:11,565 32k INFO ====> Epoch: 486 2023-02-12 12:38:23,371 32k INFO ====> Epoch: 487 2023-02-12 12:38:35,147 32k INFO ====> Epoch: 488 2023-02-12 12:38:46,975 32k INFO ====> Epoch: 489 2023-02-12 12:38:58,659 32k INFO ====> Epoch: 490 2023-02-12 12:39:10,415 32k INFO ====> Epoch: 491 2023-02-12 12:39:22,157 32k INFO ====> Epoch: 492 2023-02-12 12:39:33,923 32k INFO ====> Epoch: 493 2023-02-12 12:39:45,775 32k INFO ====> Epoch: 494 2023-02-12 12:39:57,517 32k INFO ====> Epoch: 495 2023-02-12 12:40:09,305 32k INFO ====> Epoch: 496 2023-02-12 12:40:21,072 32k INFO ====> Epoch: 497 2023-02-12 12:40:32,874 32k INFO ====> Epoch: 498 2023-02-12 12:40:44,597 32k INFO ====> Epoch: 499 2023-02-12 12:40:56,357 32k INFO ====> Epoch: 500 2023-02-12 12:41:00,319 32k INFO Train Epoch: 501 [0%] 2023-02-12 12:41:00,320 32k INFO [1.8311638832092285, 3.359696626663208, 24.659854888916016, 22.42967414855957, 0.8215926289558411, 5000, 9.394093929325224e-05] 2023-02-12 12:41:04,287 32k INFO Saving model and optimizer state at iteration 501 to ./logs\32k\G_5000.pth 2023-02-12 12:41:21,513 32k INFO Saving model and optimizer state at iteration 501 to ./logs\32k\D_5000.pth 2023-02-12 12:41:32,844 32k INFO ====> Epoch: 501 2023-02-12 12:41:45,081 32k INFO ====> Epoch: 502 2023-02-12 12:41:56,945 32k INFO ====> Epoch: 503 2023-02-12 12:42:08,693 32k INFO ====> Epoch: 504 2023-02-12 12:42:20,455 32k INFO ====> Epoch: 505 2023-02-12 12:42:32,175 32k INFO ====> Epoch: 506 2023-02-12 12:42:43,971 32k INFO ====> Epoch: 507 2023-02-12 12:42:55,683 32k INFO ====> Epoch: 508 2023-02-12 12:43:07,487 32k INFO ====> Epoch: 509 2023-02-12 12:43:19,231 32k INFO ====> Epoch: 510 2023-02-12 12:43:30,981 32k INFO ====> Epoch: 511 2023-02-12 12:43:42,736 32k INFO ====> Epoch: 512 2023-02-12 12:43:54,924 32k INFO ====> Epoch: 513 2023-02-12 12:44:06,650 32k INFO ====> Epoch: 514 2023-02-12 12:44:18,399 32k INFO ====> Epoch: 515 2023-02-12 12:44:30,619 32k INFO ====> Epoch: 516 2023-02-12 12:44:42,468 32k INFO ====> Epoch: 517 2023-02-12 12:44:54,219 32k INFO ====> Epoch: 518 2023-02-12 12:45:06,046 32k INFO ====> Epoch: 519 2023-02-12 12:45:17,798 32k INFO ====> Epoch: 520 2023-02-12 12:45:21,801 32k INFO Train Epoch: 521 [0%] 2023-02-12 12:45:21,801 32k INFO [2.0353856086730957, 3.0476789474487305, 18.870141983032227, 19.65450096130371, 0.9559214115142822, 5200, 9.370636562312829e-05] 2023-02-12 12:45:30,012 32k INFO ====> Epoch: 521 2023-02-12 12:45:41,722 32k INFO ====> Epoch: 522 2023-02-12 12:45:53,926 32k INFO ====> Epoch: 523 2023-02-12 12:46:05,667 32k INFO ====> Epoch: 524 2023-02-12 12:46:17,428 32k INFO ====> Epoch: 525 2023-02-12 12:46:29,198 32k INFO ====> Epoch: 526 2023-02-12 12:46:40,967 32k INFO ====> Epoch: 527 2023-02-12 12:46:52,679 32k INFO ====> Epoch: 528 2023-02-12 12:47:04,444 32k INFO ====> Epoch: 529 2023-02-12 12:47:16,231 32k INFO ====> Epoch: 530 2023-02-12 12:47:27,959 32k INFO ====> Epoch: 531 2023-02-12 12:47:39,672 32k INFO ====> Epoch: 532 2023-02-12 12:47:51,475 32k INFO ====> Epoch: 533 2023-02-12 12:48:03,293 32k INFO ====> Epoch: 534 2023-02-12 12:48:15,035 32k INFO ====> Epoch: 535 2023-02-12 12:48:26,836 32k INFO ====> Epoch: 536 2023-02-12 12:48:38,582 32k INFO ====> Epoch: 537 2023-02-12 12:48:50,348 32k INFO ====> Epoch: 538 2023-02-12 12:49:02,103 32k INFO ====> Epoch: 539 2023-02-12 12:49:13,851 32k INFO ====> Epoch: 540 2023-02-12 12:49:17,806 32k INFO Train Epoch: 541 [0%] 2023-02-12 12:49:17,806 32k INFO [1.7957911491394043, 3.381453037261963, 21.269289016723633, 22.524919509887695, 0.49808651208877563, 5400, 9.347237769131105e-05] 2023-02-12 12:49:25,900 32k INFO ====> Epoch: 541 2023-02-12 12:49:37,640 32k INFO ====> Epoch: 542 2023-02-12 12:49:49,750 32k INFO ====> Epoch: 543 2023-02-12 12:50:01,606 32k INFO ====> Epoch: 544 2023-02-12 12:50:13,340 32k INFO ====> Epoch: 545 2023-02-12 12:50:25,083 32k INFO ====> Epoch: 546 2023-02-12 12:50:36,843 32k INFO ====> Epoch: 547 2023-02-12 12:50:48,578 32k INFO ====> Epoch: 548 2023-02-12 12:51:00,379 32k INFO ====> Epoch: 549 2023-02-12 12:51:12,138 32k INFO ====> Epoch: 550 2023-02-12 12:51:23,893 32k INFO ====> Epoch: 551 2023-02-12 12:51:35,766 32k INFO ====> Epoch: 552 2023-02-12 12:51:47,620 32k INFO ====> Epoch: 553 2023-02-12 12:51:59,364 32k INFO ====> Epoch: 554 2023-02-12 12:52:11,138 32k INFO ====> Epoch: 555 2023-02-12 12:52:23,026 32k INFO ====> Epoch: 556 2023-02-12 12:52:34,763 32k INFO ====> Epoch: 557 2023-02-12 12:52:46,587 32k INFO ====> Epoch: 558 2023-02-12 12:52:58,322 32k INFO ====> Epoch: 559 2023-02-12 12:53:10,105 32k INFO ====> Epoch: 560 2023-02-12 12:53:14,117 32k INFO Train Epoch: 561 [0%] 2023-02-12 12:53:14,117 32k INFO [1.8477137088775635, 3.027604103088379, 22.85782241821289, 20.13661003112793, 0.6123890280723572, 5600, 9.323897403519238e-05] 2023-02-12 12:53:22,272 32k INFO ====> Epoch: 561 2023-02-12 12:53:34,035 32k INFO ====> Epoch: 562 2023-02-12 12:53:45,904 32k INFO ====> Epoch: 563 2023-02-12 12:53:57,612 32k INFO ====> Epoch: 564 2023-02-12 12:54:09,348 32k INFO ====> Epoch: 565 2023-02-12 12:54:21,237 32k INFO ====> Epoch: 566 2023-02-12 12:54:33,070 32k INFO ====> Epoch: 567 2023-02-12 12:54:44,845 32k INFO ====> Epoch: 568 2023-02-12 12:54:56,691 32k INFO ====> Epoch: 569 2023-02-12 12:55:08,421 32k INFO ====> Epoch: 570 2023-02-12 12:55:20,301 32k INFO ====> Epoch: 571 2023-02-12 12:55:32,043 32k INFO ====> Epoch: 572 2023-02-12 12:55:43,787 32k INFO ====> Epoch: 573 2023-02-12 12:55:55,516 32k INFO ====> Epoch: 574 2023-02-12 12:56:07,374 32k INFO ====> Epoch: 575 2023-02-12 12:56:19,094 32k INFO ====> Epoch: 576 2023-02-12 12:56:30,954 32k INFO ====> Epoch: 577 2023-02-12 12:56:42,653 32k INFO ====> Epoch: 578 2023-02-12 12:56:54,435 32k INFO ====> Epoch: 579 2023-02-12 12:57:06,181 32k INFO ====> Epoch: 580 2023-02-12 12:57:10,159 32k INFO Train Epoch: 581 [0%] 2023-02-12 12:57:10,159 32k INFO [1.8909555673599243, 2.789243221282959, 20.457439422607422, 20.004791259765625, 0.9085174202919006, 5800, 9.300615319581631e-05] 2023-02-12 12:57:18,239 32k INFO ====> Epoch: 581 2023-02-12 12:57:30,018 32k INFO ====> Epoch: 582 2023-02-12 12:57:41,791 32k INFO ====> Epoch: 583 2023-02-12 12:57:53,558 32k INFO ====> Epoch: 584 2023-02-12 12:58:05,297 32k INFO ====> Epoch: 585 2023-02-12 12:58:17,167 32k INFO ====> Epoch: 586 2023-02-12 12:58:28,997 32k INFO ====> Epoch: 587 2023-02-12 12:58:40,725 32k INFO ====> Epoch: 588 2023-02-12 12:58:52,620 32k INFO ====> Epoch: 589 2023-02-12 12:59:04,497 32k INFO ====> Epoch: 590 2023-02-12 12:59:16,258 32k INFO ====> Epoch: 591 2023-02-12 12:59:28,012 32k INFO ====> Epoch: 592 2023-02-12 12:59:39,752 32k INFO ====> Epoch: 593 2023-02-12 12:59:51,493 32k INFO ====> Epoch: 594 2023-02-12 13:00:03,241 32k INFO ====> Epoch: 595 2023-02-12 13:00:15,013 32k INFO ====> Epoch: 596 2023-02-12 13:00:26,901 32k INFO ====> Epoch: 597 2023-02-12 13:00:38,641 32k INFO ====> Epoch: 598 2023-02-12 13:00:50,418 32k INFO ====> Epoch: 599 2023-02-12 13:01:02,201 32k INFO ====> Epoch: 600 2023-02-12 13:01:06,180 32k INFO Train Epoch: 601 [0%] 2023-02-12 13:01:06,180 32k INFO [1.8251646757125854, 3.1473886966705322, 21.676952362060547, 23.428668975830078, 0.9191310405731201, 6000, 9.277391371786995e-05] 2023-02-12 13:01:10,203 32k INFO Saving model and optimizer state at iteration 601 to ./logs\32k\G_6000.pth 2023-02-12 13:01:28,265 32k INFO Saving model and optimizer state at iteration 601 to ./logs\32k\D_6000.pth 2023-02-12 13:01:39,649 32k INFO ====> Epoch: 601 2023-02-12 13:01:51,868 32k INFO ====> Epoch: 602 2023-02-12 13:02:03,623 32k INFO ====> Epoch: 603 2023-02-12 13:02:15,444 32k INFO ====> Epoch: 604 2023-02-12 13:02:27,178 32k INFO ====> Epoch: 605 2023-02-12 13:02:39,074 32k INFO ====> Epoch: 606 2023-02-12 13:02:50,848 32k INFO ====> Epoch: 607 2023-02-12 13:03:02,719 32k INFO ====> Epoch: 608 2023-02-12 13:03:14,587 32k INFO ====> Epoch: 609 2023-02-12 13:03:26,412 32k INFO ====> Epoch: 610 2023-02-12 13:03:38,171 32k INFO ====> Epoch: 611 2023-02-12 13:03:50,036 32k INFO ====> Epoch: 612 2023-02-12 13:04:01,814 32k INFO ====> Epoch: 613 2023-02-12 13:04:13,534 32k INFO ====> Epoch: 614 2023-02-12 13:04:25,272 32k INFO ====> Epoch: 615 2023-02-12 13:04:37,019 32k INFO ====> Epoch: 616 2023-02-12 13:04:48,771 32k INFO ====> Epoch: 617 2023-02-12 13:05:00,499 32k INFO ====> Epoch: 618 2023-02-12 13:05:12,269 32k INFO ====> Epoch: 619 2023-02-12 13:05:24,067 32k INFO ====> Epoch: 620 2023-02-12 13:05:28,084 32k INFO Train Epoch: 621 [0%] 2023-02-12 13:05:28,084 32k INFO [1.9839898347854614, 3.0866353511810303, 17.705488204956055, 19.657512664794922, 1.0067795515060425, 6200, 9.254225414967431e-05] 2023-02-12 13:05:36,170 32k INFO ====> Epoch: 621 2023-02-12 13:05:47,929 32k INFO ====> Epoch: 622 2023-02-12 13:05:59,678 32k INFO ====> Epoch: 623 2023-02-12 13:06:11,454 32k INFO ====> Epoch: 624 2023-02-12 13:06:23,192 32k INFO ====> Epoch: 625 2023-02-12 13:06:34,979 32k INFO ====> Epoch: 626 2023-02-12 13:06:46,680 32k INFO ====> Epoch: 627 2023-02-12 13:06:58,456 32k INFO ====> Epoch: 628 2023-02-12 13:07:10,188 32k INFO ====> Epoch: 629 2023-02-12 13:07:21,939 32k INFO ====> Epoch: 630 2023-02-12 13:07:33,705 32k INFO ====> Epoch: 631 2023-02-12 13:07:45,482 32k INFO ====> Epoch: 632 2023-02-12 13:07:57,287 32k INFO ====> Epoch: 633 2023-02-12 13:08:09,075 32k INFO ====> Epoch: 634 2023-02-12 13:08:20,826 32k INFO ====> Epoch: 635 2023-02-12 13:08:32,603 32k INFO ====> Epoch: 636 2023-02-12 13:08:44,364 32k INFO ====> Epoch: 637 2023-02-12 13:08:56,116 32k INFO ====> Epoch: 638 2023-02-12 13:09:07,862 32k INFO ====> Epoch: 639 2023-02-12 13:09:19,576 32k INFO ====> Epoch: 640 2023-02-12 13:09:23,525 32k INFO Train Epoch: 641 [0%] 2023-02-12 13:09:23,525 32k INFO [1.7782466411590576, 3.4183971881866455, 22.802471160888672, 22.295732498168945, 0.6453914642333984, 6400, 9.231117304317535e-05] 2023-02-12 13:09:31,710 32k INFO ====> Epoch: 641 2023-02-12 13:09:43,466 32k INFO ====> Epoch: 642 2023-02-12 13:09:55,221 32k INFO ====> Epoch: 643 2023-02-12 13:10:07,007 32k INFO ====> Epoch: 644 2023-02-12 13:10:18,760 32k INFO ====> Epoch: 645 2023-02-12 13:10:30,951 32k INFO ====> Epoch: 646 2023-02-12 13:10:44,592 32k INFO ====> Epoch: 647 2023-02-12 13:10:58,156 32k INFO ====> Epoch: 648 2023-02-12 13:11:11,528 32k INFO ====> Epoch: 649 2023-02-12 13:11:25,025 32k INFO ====> Epoch: 650 2023-02-12 13:11:38,460 32k INFO ====> Epoch: 651 2023-02-12 13:11:51,942 32k INFO ====> Epoch: 652 2023-02-12 13:12:05,357 32k INFO ====> Epoch: 653 2023-02-12 13:12:18,749 32k INFO ====> Epoch: 654 2023-02-12 13:12:32,225 32k INFO ====> Epoch: 655 2023-02-12 13:12:45,600 32k INFO ====> Epoch: 656 2023-02-12 13:12:59,218 32k INFO ====> Epoch: 657 2023-02-12 13:13:12,707 32k INFO ====> Epoch: 658 2023-02-12 13:13:26,173 32k INFO ====> Epoch: 659 2023-02-12 13:13:39,603 32k INFO ====> Epoch: 660 2023-02-12 13:13:43,788 32k INFO Train Epoch: 661 [0%] 2023-02-12 13:13:43,789 32k INFO [1.9264225959777832, 3.337991237640381, 18.480573654174805, 17.932666778564453, 0.616128146648407, 6600, 9.208066895393489e-05] 2023-02-12 13:13:53,389 32k INFO ====> Epoch: 661 2023-02-12 13:14:06,806 32k INFO ====> Epoch: 662 2023-02-12 13:14:20,261 32k INFO ====> Epoch: 663 2023-02-12 13:14:33,693 32k INFO ====> Epoch: 664 2023-02-12 13:14:47,091 32k INFO ====> Epoch: 665 2023-02-12 13:15:00,543 32k INFO ====> Epoch: 666 2023-02-12 13:15:14,015 32k INFO ====> Epoch: 667 2023-02-12 13:15:27,535 32k INFO ====> Epoch: 668 2023-02-12 13:15:40,953 32k INFO ====> Epoch: 669 2023-02-12 13:15:54,405 32k INFO ====> Epoch: 670 2023-02-12 13:16:07,793 32k INFO ====> Epoch: 671 2023-02-12 13:16:21,322 32k INFO ====> Epoch: 672 2023-02-12 13:16:34,763 32k INFO ====> Epoch: 673 2023-02-12 13:16:48,396 32k INFO ====> Epoch: 674 2023-02-12 13:17:01,954 32k INFO ====> Epoch: 675 2023-02-12 13:17:15,398 32k INFO ====> Epoch: 676 2023-02-12 13:17:28,769 32k INFO ====> Epoch: 677 2023-02-12 13:17:42,210 32k INFO ====> Epoch: 678 2023-02-12 13:17:55,643 32k INFO ====> Epoch: 679 2023-02-12 13:18:09,050 32k INFO ====> Epoch: 680 2023-02-12 13:18:13,256 32k INFO Train Epoch: 681 [0%] 2023-02-12 13:18:13,257 32k INFO [1.9855132102966309, 3.214656114578247, 20.562849044799805, 22.693315505981445, 0.7239395976066589, 6800, 9.185074044112143e-05] 2023-02-12 13:18:22,652 32k INFO ====> Epoch: 681 2023-02-12 13:18:36,193 32k INFO ====> Epoch: 682 2023-02-12 13:18:49,682 32k INFO ====> Epoch: 683 2023-02-12 13:19:03,198 32k INFO ====> Epoch: 684 2023-02-12 13:19:16,615 32k INFO ====> Epoch: 685 2023-02-12 13:19:30,145 32k INFO ====> Epoch: 686 2023-02-12 13:19:43,713 32k INFO ====> Epoch: 687 2023-02-12 13:19:57,126 32k INFO ====> Epoch: 688 2023-02-12 13:20:10,388 32k INFO ====> Epoch: 689 2023-02-12 13:20:23,799 32k INFO ====> Epoch: 690 2023-02-12 13:20:37,306 32k INFO ====> Epoch: 691 2023-02-12 13:20:50,636 32k INFO ====> Epoch: 692 2023-02-12 13:21:03,898 32k INFO ====> Epoch: 693 2023-02-12 13:21:17,348 32k INFO ====> Epoch: 694 2023-02-12 13:21:30,647 32k INFO ====> Epoch: 695 2023-02-12 13:21:44,206 32k INFO ====> Epoch: 696 2023-02-12 13:21:57,663 32k INFO ====> Epoch: 697 2023-02-12 13:22:11,052 32k INFO ====> Epoch: 698 2023-02-12 13:22:24,423 32k INFO ====> Epoch: 699 2023-02-12 13:22:37,745 32k INFO ====> Epoch: 700 2023-02-12 13:22:41,886 32k INFO Train Epoch: 701 [0%] 2023-02-12 13:22:41,886 32k INFO [2.178258180618286, 2.519909620285034, 15.551091194152832, 18.360708236694336, 0.7272467017173767, 7000, 9.162138606750142e-05] 2023-02-12 13:22:45,982 32k INFO Saving model and optimizer state at iteration 701 to ./logs\32k\G_7000.pth 2023-02-12 13:23:03,195 32k INFO Saving model and optimizer state at iteration 701 to ./logs\32k\D_7000.pth 2023-02-12 13:23:15,842 32k INFO ====> Epoch: 701 2023-02-12 13:23:29,826 32k INFO ====> Epoch: 702 2023-02-12 13:23:43,397 32k INFO ====> Epoch: 703 2023-02-12 13:23:56,847 32k INFO ====> Epoch: 704 2023-02-12 13:24:10,369 32k INFO ====> Epoch: 705 2023-02-12 13:24:23,734 32k INFO ====> Epoch: 706 2023-02-12 13:24:37,238 32k INFO ====> Epoch: 707 2023-02-12 13:24:50,742 32k INFO ====> Epoch: 708 2023-02-12 13:25:04,262 32k INFO ====> Epoch: 709 2023-02-12 13:25:17,726 32k INFO ====> Epoch: 710 2023-02-12 13:25:31,221 32k INFO ====> Epoch: 711 2023-02-12 13:25:44,906 32k INFO ====> Epoch: 712 2023-02-12 13:25:58,477 32k INFO ====> Epoch: 713 2023-02-12 13:26:12,123 32k INFO ====> Epoch: 714 2023-02-12 13:26:25,548 32k INFO ====> Epoch: 715 2023-02-12 13:26:39,125 32k INFO ====> Epoch: 716 2023-02-12 13:26:52,664 32k INFO ====> Epoch: 717 2023-02-12 13:27:06,124 32k INFO ====> Epoch: 718 2023-02-12 13:27:19,777 32k INFO ====> Epoch: 719 2023-02-12 13:27:33,160 32k INFO ====> Epoch: 720 2023-02-12 13:27:37,379 32k INFO Train Epoch: 721 [0%] 2023-02-12 13:27:37,379 32k INFO [1.8394410610198975, 3.2603728771209717, 22.712038040161133, 20.24898910522461, 1.0083003044128418, 7200, 9.139260439943005e-05] 2023-02-12 13:27:46,934 32k INFO ====> Epoch: 721 2023-02-12 13:28:00,414 32k INFO ====> Epoch: 722 2023-02-12 13:28:13,964 32k INFO ====> Epoch: 723 2023-02-12 13:28:27,359 32k INFO ====> Epoch: 724 2023-02-12 13:28:40,802 32k INFO ====> Epoch: 725 2023-02-12 13:28:54,378 32k INFO ====> Epoch: 726 2023-02-12 13:29:07,814 32k INFO ====> Epoch: 727 2023-02-12 13:29:21,400 32k INFO ====> Epoch: 728 2023-02-12 13:29:35,032 32k INFO ====> Epoch: 729 2023-02-12 13:29:48,482 32k INFO ====> Epoch: 730 2023-02-12 13:30:01,881 32k INFO ====> Epoch: 731 2023-02-12 13:30:15,487 32k INFO ====> Epoch: 732 2023-02-12 13:30:29,077 32k INFO ====> Epoch: 733 2023-02-12 13:30:42,532 32k INFO ====> Epoch: 734 2023-02-12 13:30:56,043 32k INFO ====> Epoch: 735 2023-02-12 13:31:09,484 32k INFO ====> Epoch: 736 2023-02-12 13:31:22,841 32k INFO ====> Epoch: 737 2023-02-12 13:31:36,393 32k INFO ====> Epoch: 738 2023-02-12 13:31:49,668 32k INFO ====> Epoch: 739 2023-02-12 13:32:03,245 32k INFO ====> Epoch: 740 2023-02-12 13:32:07,437 32k INFO Train Epoch: 741 [0%] 2023-02-12 13:32:07,438 32k INFO [1.9900994300842285, 3.2577409744262695, 21.37356185913086, 19.953445434570312, 0.7022988200187683, 7400, 9.116439400684243e-05] 2023-02-12 13:32:16,979 32k INFO ====> Epoch: 741 2023-02-12 13:32:30,215 32k INFO ====> Epoch: 742 2023-02-12 13:32:43,706 32k INFO ====> Epoch: 743 2023-02-12 13:32:57,204 32k INFO ====> Epoch: 744 2023-02-12 13:33:10,610 32k INFO ====> Epoch: 745 2023-02-12 13:33:23,911 32k INFO ====> Epoch: 746 2023-02-12 13:33:37,477 32k INFO ====> Epoch: 747 2023-02-12 13:33:50,979 32k INFO ====> Epoch: 748 2023-02-12 13:34:04,488 32k INFO ====> Epoch: 749 2023-02-12 13:34:18,080 32k INFO ====> Epoch: 750 2023-02-12 13:34:31,582 32k INFO ====> Epoch: 751 2023-02-12 13:34:44,955 32k INFO ====> Epoch: 752 2023-02-12 13:34:58,315 32k INFO ====> Epoch: 753 2023-02-12 13:35:11,776 32k INFO ====> Epoch: 754 2023-02-12 13:35:25,220 32k INFO ====> Epoch: 755 2023-02-12 13:35:38,697 32k INFO ====> Epoch: 756 2023-02-12 13:35:52,330 32k INFO ====> Epoch: 757 2023-02-12 13:36:05,632 32k INFO ====> Epoch: 758 2023-02-12 13:36:19,847 32k INFO ====> Epoch: 759 2023-02-12 13:36:34,887 32k INFO ====> Epoch: 760 2023-02-12 13:36:39,150 32k INFO Train Epoch: 761 [0%] 2023-02-12 13:36:39,151 32k INFO [2.1635007858276367, 3.062483549118042, 18.44725799560547, 20.376346588134766, 0.5196554660797119, 7600, 9.093675346324454e-05] 2023-02-12 13:36:49,645 32k INFO ====> Epoch: 761 2023-02-12 13:37:04,174 32k INFO ====> Epoch: 762 2023-02-12 13:37:19,843 32k INFO ====> Epoch: 763 2023-02-12 13:37:33,164 32k INFO ====> Epoch: 764 2023-02-12 13:37:46,528 32k INFO ====> Epoch: 765 2023-02-12 13:37:59,990 32k INFO ====> Epoch: 766 2023-02-12 13:38:13,519 32k INFO ====> Epoch: 767 2023-02-12 13:38:26,899 32k INFO ====> Epoch: 768 2023-02-12 13:38:40,373 32k INFO ====> Epoch: 769 2023-02-12 13:38:53,784 32k INFO ====> Epoch: 770 2023-02-12 13:39:07,289 32k INFO ====> Epoch: 771 2023-02-12 13:39:20,611 32k INFO ====> Epoch: 772 2023-02-12 13:39:33,996 32k INFO ====> Epoch: 773 2023-02-12 13:39:47,533 32k INFO ====> Epoch: 774 2023-02-12 13:40:00,907 32k INFO ====> Epoch: 775 2023-02-12 13:40:14,365 32k INFO ====> Epoch: 776 2023-02-12 13:40:27,799 32k INFO ====> Epoch: 777 2023-02-12 13:40:41,239 32k INFO ====> Epoch: 778 2023-02-12 13:40:54,716 32k INFO ====> Epoch: 779 2023-02-12 13:41:08,240 32k INFO ====> Epoch: 780 2023-02-12 13:41:12,452 32k INFO Train Epoch: 781 [0%] 2023-02-12 13:41:12,452 32k INFO [2.048905611038208, 3.0901808738708496, 20.4196834564209, 18.905176162719727, 0.5383411645889282, 7800, 9.07096813457043e-05] 2023-02-12 13:41:22,035 32k INFO ====> Epoch: 781 2023-02-12 13:41:35,598 32k INFO ====> Epoch: 782 2023-02-12 13:41:49,169 32k INFO ====> Epoch: 783 2023-02-12 13:42:02,928 32k INFO ====> Epoch: 784 2023-02-12 13:42:16,517 32k INFO ====> Epoch: 785 2023-02-12 13:42:30,017 32k INFO ====> Epoch: 786 2023-02-12 13:42:43,474 32k INFO ====> Epoch: 787 2023-02-12 13:42:56,844 32k INFO ====> Epoch: 788 2023-02-12 13:43:10,294 32k INFO ====> Epoch: 789 2023-02-12 13:43:23,713 32k INFO ====> Epoch: 790 2023-02-12 13:43:37,129 32k INFO ====> Epoch: 791 2023-02-12 13:46:44,643 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'kokona': 0}, 'model_dir': './logs\\32k'} 2023-02-12 13:46:53,444 32k INFO Loaded checkpoint './logs\32k\G_7000.pth' (iteration 701) 2023-02-12 13:46:53,823 32k INFO Loaded checkpoint './logs\32k\D_7000.pth' (iteration 701) 2023-02-12 13:47:01,848 32k INFO Train Epoch: 701 [0%] 2023-02-12 13:47:01,848 32k INFO [2.0743532180786133, 2.8655288219451904, 21.489702224731445, 20.632448196411133, 0.9461040496826172, 7000, 9.160993339424298e-05] 2023-02-12 13:47:06,729 32k INFO Saving model and optimizer state at iteration 701 to ./logs\32k\G_7000.pth 2023-02-12 13:47:25,341 32k INFO Saving model and optimizer state at iteration 701 to ./logs\32k\D_7000.pth 2023-02-12 13:47:38,304 32k INFO ====> Epoch: 701 2023-02-12 13:47:49,998 32k INFO ====> Epoch: 702 2023-02-12 13:48:03,116 32k INFO ====> Epoch: 703 2023-02-12 13:48:16,281 32k INFO ====> Epoch: 704 2023-02-12 13:48:28,493 32k INFO ====> Epoch: 705 2023-02-12 13:48:40,439 32k INFO ====> Epoch: 706 2023-02-12 13:48:52,397 32k INFO ====> Epoch: 707 2023-02-12 13:49:04,442 32k INFO ====> Epoch: 708 2023-02-12 13:49:16,668 32k INFO ====> Epoch: 709 2023-02-12 13:49:28,690 32k INFO ====> Epoch: 710 2023-02-12 13:49:40,647 32k INFO ====> Epoch: 711 2023-02-12 13:49:52,584 32k INFO ====> Epoch: 712 2023-02-12 13:50:04,530 32k INFO ====> Epoch: 713 2023-02-12 13:50:16,511 32k INFO ====> Epoch: 714 2023-02-12 13:50:28,471 32k INFO ====> Epoch: 715 2023-02-12 13:50:40,454 32k INFO ====> Epoch: 716 2023-02-12 13:50:52,445 32k INFO ====> Epoch: 717 2023-02-12 13:51:04,395 32k INFO ====> Epoch: 718 2023-02-12 13:51:16,342 32k INFO ====> Epoch: 719 2023-02-12 13:51:28,328 32k INFO ====> Epoch: 720 2023-02-12 13:51:32,372 32k INFO Train Epoch: 721 [0%] 2023-02-12 13:51:32,373 32k INFO [1.9847931861877441, 2.781100273132324, 21.47286033630371, 20.723678588867188, 0.8959621787071228, 7200, 9.138118032388012e-05] 2023-02-12 13:51:40,661 32k INFO ====> Epoch: 721 2023-02-12 13:51:52,570 32k INFO ====> Epoch: 722 2023-02-12 13:52:04,552 32k INFO ====> Epoch: 723 2023-02-12 13:52:16,526 32k INFO ====> Epoch: 724 2023-02-12 13:52:28,499 32k INFO ====> Epoch: 725 2023-02-12 13:52:40,534 32k INFO ====> Epoch: 726 2023-02-12 13:52:52,475 32k INFO ====> Epoch: 727 2023-02-12 13:53:04,430 32k INFO ====> Epoch: 728 2023-02-12 13:53:16,394 32k INFO ====> Epoch: 729 2023-02-12 13:53:28,383 32k INFO ====> Epoch: 730 2023-02-12 13:53:40,305 32k INFO ====> Epoch: 731 2023-02-12 13:53:52,292 32k INFO ====> Epoch: 732 2023-02-12 13:54:04,237 32k INFO ====> Epoch: 733 2023-02-12 13:54:16,180 32k INFO ====> Epoch: 734 2023-02-12 13:54:28,199 32k INFO ====> Epoch: 735 2023-02-12 13:54:40,161 32k INFO ====> Epoch: 736 2023-02-12 13:54:52,191 32k INFO ====> Epoch: 737 2023-02-12 13:55:04,150 32k INFO ====> Epoch: 738 2023-02-12 13:55:16,113 32k INFO ====> Epoch: 739 2023-02-12 13:55:28,092 32k INFO ====> Epoch: 740 2023-02-12 13:55:32,161 32k INFO Train Epoch: 741 [0%] 2023-02-12 13:55:32,161 32k INFO [2.1115012168884277, 2.570882797241211, 17.793506622314453, 18.005401611328125, 0.47993040084838867, 7400, 9.115299845759157e-05] 2023-02-12 13:55:40,412 32k INFO ====> Epoch: 741 2023-02-12 13:55:52,408 32k INFO ====> Epoch: 742 2023-02-12 13:56:04,365 32k INFO ====> Epoch: 743 2023-02-12 13:56:16,357 32k INFO ====> Epoch: 744 2023-02-12 13:56:28,315 32k INFO ====> Epoch: 745 2023-02-12 13:56:40,310 32k INFO ====> Epoch: 746 2023-02-12 13:56:52,331 32k INFO ====> Epoch: 747 2023-02-12 13:57:04,618 32k INFO ====> Epoch: 748 2023-02-12 13:57:17,097 32k INFO ====> Epoch: 749 2023-02-12 13:57:29,133 32k INFO ====> Epoch: 750 2023-02-12 13:57:41,091 32k INFO ====> Epoch: 751 2023-02-12 13:57:53,117 32k INFO ====> Epoch: 752 2023-02-12 13:58:05,069 32k INFO ====> Epoch: 753 2023-02-12 13:58:17,028 32k INFO ====> Epoch: 754 2023-02-12 13:58:29,019 32k INFO ====> Epoch: 755 2023-02-12 13:58:40,999 32k INFO ====> Epoch: 756 2023-02-12 13:58:52,926 32k INFO ====> Epoch: 757 2023-02-12 13:59:04,932 32k INFO ====> Epoch: 758 2023-02-12 13:59:16,858 32k INFO ====> Epoch: 759 2023-02-12 13:59:28,840 32k INFO ====> Epoch: 760 2023-02-12 13:59:32,838 32k INFO Train Epoch: 761 [0%] 2023-02-12 13:59:32,838 32k INFO [1.8719170093536377, 2.988452911376953, 22.19683265686035, 18.409896850585938, 0.8148029446601868, 7600, 9.092538636906162e-05] 2023-02-12 13:59:41,087 32k INFO ====> Epoch: 761 2023-02-12 13:59:53,045 32k INFO ====> Epoch: 762 2023-02-12 14:00:05,078 32k INFO ====> Epoch: 763 2023-02-12 14:00:17,047 32k INFO ====> Epoch: 764 2023-02-12 14:00:28,990 32k INFO ====> Epoch: 765 2023-02-12 14:00:40,914 32k INFO ====> Epoch: 766 2023-02-12 14:00:52,823 32k INFO ====> Epoch: 767 2023-02-12 14:01:04,785 32k INFO ====> Epoch: 768 2023-02-12 14:01:16,750 32k INFO ====> Epoch: 769 2023-02-12 14:01:28,735 32k INFO ====> Epoch: 770 2023-02-12 14:01:40,718 32k INFO ====> Epoch: 771 2023-02-12 14:01:52,670 32k INFO ====> Epoch: 772 2023-02-12 14:02:04,558 32k INFO ====> Epoch: 773 2023-02-12 14:02:16,522 32k INFO ====> Epoch: 774 2023-02-12 14:02:28,528 32k INFO ====> Epoch: 775 2023-02-12 14:02:40,525 32k INFO ====> Epoch: 776 2023-02-12 14:02:52,498 32k INFO ====> Epoch: 777 2023-02-12 14:03:04,529 32k INFO ====> Epoch: 778 2023-02-12 14:03:16,568 32k INFO ====> Epoch: 779 2023-02-12 14:03:28,565 32k INFO ====> Epoch: 780 2023-02-12 14:03:32,627 32k INFO Train Epoch: 781 [0%] 2023-02-12 14:03:32,627 32k INFO [1.736820101737976, 3.68717098236084, 23.286638259887695, 22.309734344482422, 0.6430284976959229, 7800, 9.069834263553609e-05] 2023-02-12 14:03:40,853 32k INFO ====> Epoch: 781 2023-02-12 14:03:52,810 32k INFO ====> Epoch: 782 2023-02-12 14:04:04,790 32k INFO ====> Epoch: 783 2023-02-12 14:04:16,751 32k INFO ====> Epoch: 784 2023-02-12 14:04:28,671 32k INFO ====> Epoch: 785 2023-02-12 14:04:40,989 32k INFO ====> Epoch: 786 2023-02-12 14:04:52,937 32k INFO ====> Epoch: 787 2023-02-12 14:05:04,887 32k INFO ====> Epoch: 788 2023-02-12 14:05:16,805 32k INFO ====> Epoch: 789 2023-02-12 14:05:28,751 32k INFO ====> Epoch: 790 2023-02-12 14:05:40,815 32k INFO ====> Epoch: 791 2023-02-12 14:05:53,120 32k INFO ====> Epoch: 792 2023-02-12 14:06:05,095 32k INFO ====> Epoch: 793 2023-02-12 14:06:17,067 32k INFO ====> Epoch: 794 2023-02-12 14:06:28,986 32k INFO ====> Epoch: 795 2023-02-12 14:06:40,929 32k INFO ====> Epoch: 796 2023-02-12 14:06:52,938 32k INFO ====> Epoch: 797 2023-02-12 14:07:04,844 32k INFO ====> Epoch: 798 2023-02-12 14:07:16,843 32k INFO ====> Epoch: 799 2023-02-12 14:07:28,779 32k INFO ====> Epoch: 800 2023-02-12 14:07:32,802 32k INFO Train Epoch: 801 [0%] 2023-02-12 14:07:32,803 32k INFO [1.7944151163101196, 3.3288469314575195, 20.172019958496094, 21.2901668548584, 0.5095722675323486, 8000, 9.04718658378136e-05] 2023-02-12 14:07:36,897 32k INFO Saving model and optimizer state at iteration 801 to ./logs\32k\G_8000.pth 2023-02-12 14:07:55,722 32k INFO Saving model and optimizer state at iteration 801 to ./logs\32k\D_8000.pth 2023-02-12 14:08:07,658 32k INFO ====> Epoch: 801 2023-02-12 14:08:20,145 32k INFO ====> Epoch: 802 2023-02-12 14:08:32,165 32k INFO ====> Epoch: 803 2023-02-12 14:08:44,544 32k INFO ====> Epoch: 804 2023-02-12 14:08:56,721 32k INFO ====> Epoch: 805 2023-02-12 14:09:09,410 32k INFO ====> Epoch: 806 2023-02-12 14:09:21,895 32k INFO ====> Epoch: 807 2023-02-12 14:09:34,301 32k INFO ====> Epoch: 808 2023-02-12 14:09:46,346 32k INFO ====> Epoch: 809 2023-02-12 14:09:58,505 32k INFO ====> Epoch: 810 2023-02-12 14:10:10,435 32k INFO ====> Epoch: 811 2023-02-12 14:10:22,442 32k INFO ====> Epoch: 812 2023-02-12 14:10:34,395 32k INFO ====> Epoch: 813 2023-02-12 14:10:46,348 32k INFO ====> Epoch: 814 2023-02-12 14:10:58,308 32k INFO ====> Epoch: 815 2023-02-12 14:11:10,260 32k INFO ====> Epoch: 816 2023-02-12 14:11:22,249 32k INFO ====> Epoch: 817 2023-02-12 14:11:34,168 32k INFO ====> Epoch: 818 2023-02-12 14:11:46,108 32k INFO ====> Epoch: 819 2023-02-12 14:11:58,102 32k INFO ====> Epoch: 820 2023-02-12 14:12:02,151 32k INFO Train Epoch: 821 [0%] 2023-02-12 14:12:02,152 32k INFO [2.0393142700195312, 2.7750158309936523, 16.68890380859375, 16.175832748413086, 0.9834238886833191, 8200, 9.024595456023638e-05] 2023-02-12 14:12:10,492 32k INFO ====> Epoch: 821 2023-02-12 14:12:22,445 32k INFO ====> Epoch: 822 2023-02-12 14:12:34,444 32k INFO ====> Epoch: 823 2023-02-12 14:12:46,418 32k INFO ====> Epoch: 824 2023-02-12 14:12:58,376 32k INFO ====> Epoch: 825 2023-02-12 14:13:10,334 32k INFO ====> Epoch: 826 2023-02-12 14:13:22,341 32k INFO ====> Epoch: 827 2023-02-12 14:13:34,397 32k INFO ====> Epoch: 828 2023-02-12 14:13:46,374 32k INFO ====> Epoch: 829 2023-02-12 14:13:58,342 32k INFO ====> Epoch: 830 2023-02-12 14:14:10,294 32k INFO ====> Epoch: 831 2023-02-12 14:14:22,281 32k INFO ====> Epoch: 832 2023-02-12 14:14:34,194 32k INFO ====> Epoch: 833 2023-02-12 14:14:46,141 32k INFO ====> Epoch: 834 2023-02-12 14:14:58,122 32k INFO ====> Epoch: 835 2023-02-12 14:15:10,096 32k INFO ====> Epoch: 836 2023-02-12 14:15:22,038 32k INFO ====> Epoch: 837 2023-02-12 14:15:34,005 32k INFO ====> Epoch: 838 2023-02-12 14:15:46,016 32k INFO ====> Epoch: 839 2023-02-12 14:15:57,970 32k INFO ====> Epoch: 840 2023-02-12 14:16:01,973 32k INFO Train Epoch: 841 [0%] 2023-02-12 14:16:01,973 32k INFO [2.0190176963806152, 2.9155752658843994, 19.60703468322754, 19.409595489501953, 0.5518465638160706, 8400, 9.002060739068175e-05] 2023-02-12 14:16:10,200 32k INFO ====> Epoch: 841 2023-02-12 14:16:22,139 32k INFO ====> Epoch: 842 2023-02-12 14:16:34,089 32k INFO ====> Epoch: 843 2023-02-12 14:16:46,051 32k INFO ====> Epoch: 844 2023-02-12 14:16:58,040 32k INFO ====> Epoch: 845 2023-02-12 14:17:09,949 32k INFO ====> Epoch: 846 2023-02-12 14:17:21,936 32k INFO ====> Epoch: 847 2023-02-12 14:17:33,933 32k INFO ====> Epoch: 848 2023-02-12 14:17:45,919 32k INFO ====> Epoch: 849 2023-02-12 14:17:57,862 32k INFO ====> Epoch: 850 2023-02-12 14:18:10,199 32k INFO ====> Epoch: 851 2023-02-12 14:18:22,246 32k INFO ====> Epoch: 852 2023-02-12 14:18:34,220 32k INFO ====> Epoch: 853 2023-02-12 14:18:46,197 32k INFO ====> Epoch: 854 2023-02-12 14:18:58,191 32k INFO ====> Epoch: 855 2023-02-12 14:19:10,258 32k INFO ====> Epoch: 856 2023-02-12 14:19:22,399 32k INFO ====> Epoch: 857 2023-02-12 14:19:34,461 32k INFO ====> Epoch: 858 2023-02-12 14:19:46,609 32k INFO ====> Epoch: 859 2023-02-12 14:19:58,608 32k INFO ====> Epoch: 860 2023-02-12 14:20:02,685 32k INFO Train Epoch: 861 [0%] 2023-02-12 14:20:02,686 32k INFO [1.941718339920044, 2.9887161254882812, 17.11890983581543, 18.92049217224121, 0.47159188985824585, 8600, 8.979582292055309e-05] 2023-02-12 14:20:10,930 32k INFO ====> Epoch: 861 2023-02-12 14:20:23,177 32k INFO ====> Epoch: 862 2023-02-12 14:20:35,134 32k INFO ====> Epoch: 863 2023-02-12 14:20:47,121 32k INFO ====> Epoch: 864 2023-02-12 14:20:59,084 32k INFO ====> Epoch: 865 2023-02-12 14:21:11,058 32k INFO ====> Epoch: 866 2023-02-12 14:21:23,071 32k INFO ====> Epoch: 867 2023-02-12 14:21:35,015 32k INFO ====> Epoch: 868 2023-02-12 14:21:46,985 32k INFO ====> Epoch: 869 2023-02-12 14:21:58,894 32k INFO ====> Epoch: 870 2023-02-12 14:22:10,824 32k INFO ====> Epoch: 871 2023-02-12 14:22:23,096 32k INFO ====> Epoch: 872 2023-02-12 14:22:35,131 32k INFO ====> Epoch: 873 2023-02-12 14:22:47,143 32k INFO ====> Epoch: 874 2023-02-12 14:22:59,165 32k INFO ====> Epoch: 875 2023-02-12 14:23:11,414 32k INFO ====> Epoch: 876 2023-02-12 14:23:23,401 32k INFO ====> Epoch: 877 2023-02-12 14:23:35,445 32k INFO ====> Epoch: 878 2023-02-12 14:23:47,402 32k INFO ====> Epoch: 879 2023-02-12 14:23:59,383 32k INFO ====> Epoch: 880 2023-02-12 14:24:03,358 32k INFO Train Epoch: 881 [0%] 2023-02-12 14:24:03,359 32k INFO [1.8067156076431274, 3.42271089553833, 22.4112548828125, 20.323345184326172, 0.5746048092842102, 8800, 8.957159974477111e-05] 2023-02-12 14:24:11,619 32k INFO ====> Epoch: 881 2023-02-12 14:24:23,600 32k INFO ====> Epoch: 882 2023-02-12 14:24:35,576 32k INFO ====> Epoch: 883 2023-02-12 14:24:47,519 32k INFO ====> Epoch: 884 2023-02-12 14:24:59,475 32k INFO ====> Epoch: 885 2023-02-12 14:25:11,437 32k INFO ====> Epoch: 886 2023-02-12 14:25:23,456 32k INFO ====> Epoch: 887 2023-02-12 14:25:35,432 32k INFO ====> Epoch: 888 2023-02-12 14:25:47,389 32k INFO ====> Epoch: 889 2023-02-12 14:25:59,327 32k INFO ====> Epoch: 890 2023-02-12 14:26:11,282 32k INFO ====> Epoch: 891 2023-02-12 14:26:23,289 32k INFO ====> Epoch: 892 2023-02-12 14:26:35,291 32k INFO ====> Epoch: 893 2023-02-12 14:26:47,293 32k INFO ====> Epoch: 894 2023-02-12 14:26:59,280 32k INFO ====> Epoch: 895 2023-02-12 14:27:11,276 32k INFO ====> Epoch: 896 2023-02-12 14:27:23,283 32k INFO ====> Epoch: 897 2023-02-12 14:27:35,285 32k INFO ====> Epoch: 898 2023-02-12 14:27:47,245 32k INFO ====> Epoch: 899 2023-02-12 14:27:59,207 32k INFO ====> Epoch: 900 2023-02-12 14:28:03,213 32k INFO Train Epoch: 901 [0%] 2023-02-12 14:28:03,213 32k INFO [1.8195370435714722, 3.0551533699035645, 19.27685546875, 18.536165237426758, 1.1415036916732788, 9000, 8.934793646176498e-05] 2023-02-12 14:28:07,259 32k INFO Saving model and optimizer state at iteration 901 to ./logs\32k\G_9000.pth 2023-02-12 14:28:23,218 32k INFO Saving model and optimizer state at iteration 901 to ./logs\32k\D_9000.pth 2023-02-12 14:28:35,036 32k INFO ====> Epoch: 901 2023-02-12 14:28:47,555 32k INFO ====> Epoch: 902 2023-02-12 14:28:59,495 32k INFO ====> Epoch: 903 2023-02-12 14:29:11,583 32k INFO ====> Epoch: 904 2023-02-12 14:29:23,639 32k INFO ====> Epoch: 905 2023-02-12 14:29:35,681 32k INFO ====> Epoch: 906 2023-02-12 14:29:47,591 32k INFO ====> Epoch: 907 2023-02-12 14:29:59,560 32k INFO ====> Epoch: 908 2023-02-12 14:30:11,507 32k INFO ====> Epoch: 909 2023-02-12 14:30:23,646 32k INFO ====> Epoch: 910 2023-02-12 14:30:35,627 32k INFO ====> Epoch: 911 2023-02-12 14:30:47,594 32k INFO ====> Epoch: 912 2023-02-12 14:30:59,667 32k INFO ====> Epoch: 913 2023-02-12 14:31:11,679 32k INFO ====> Epoch: 914 2023-02-12 14:31:23,606 32k INFO ====> Epoch: 915 2023-02-12 14:31:35,559 32k INFO ====> Epoch: 916 2023-02-12 14:31:47,576 32k INFO ====> Epoch: 917 2023-02-12 14:31:59,606 32k INFO ====> Epoch: 918 2023-02-12 14:32:11,607 32k INFO ====> Epoch: 919 2023-02-12 14:32:23,654 32k INFO ====> Epoch: 920 2023-02-12 14:32:27,669 32k INFO Train Epoch: 921 [0%] 2023-02-12 14:32:27,669 32k INFO [1.7966740131378174, 3.115190029144287, 19.65473747253418, 17.708545684814453, 0.869736909866333, 9200, 8.912483167346374e-05] 2023-02-12 14:32:35,942 32k INFO ====> Epoch: 921 2023-02-12 14:32:47,874 32k INFO ====> Epoch: 922 2023-02-12 14:32:59,917 32k INFO ====> Epoch: 923 2023-02-12 14:33:11,920 32k INFO ====> Epoch: 924 2023-02-12 14:33:24,014 32k INFO ====> Epoch: 925 2023-02-12 14:33:35,958 32k INFO ====> Epoch: 926 2023-02-12 14:33:47,925 32k INFO ====> Epoch: 927 2023-02-12 14:34:00,071 32k INFO ====> Epoch: 928 2023-02-12 14:34:12,095 32k INFO ====> Epoch: 929 2023-02-12 14:34:24,116 32k INFO ====> Epoch: 930 2023-02-12 14:34:36,041 32k INFO ====> Epoch: 931 2023-02-12 14:34:48,040 32k INFO ====> Epoch: 932 2023-02-12 14:35:00,020 32k INFO ====> Epoch: 933 2023-02-12 14:35:12,039 32k INFO ====> Epoch: 934 2023-02-12 14:35:24,055 32k INFO ====> Epoch: 935 2023-02-12 14:35:36,045 32k INFO ====> Epoch: 936 2023-02-12 14:35:48,058 32k INFO ====> Epoch: 937 2023-02-12 14:36:00,129 32k INFO ====> Epoch: 938 2023-02-12 14:36:12,218 32k INFO ====> Epoch: 939 2023-02-12 14:36:24,209 32k INFO ====> Epoch: 940 2023-02-12 14:36:28,373 32k INFO Train Epoch: 941 [0%] 2023-02-12 14:36:28,373 32k INFO [1.8863221406936646, 3.113790512084961, 20.693424224853516, 20.36008644104004, 0.7652761936187744, 9400, 8.89022839852874e-05] 2023-02-12 14:36:36,644 32k INFO ====> Epoch: 941 2023-02-12 14:36:48,635 32k INFO ====> Epoch: 942 2023-02-12 14:37:00,711 32k INFO ====> Epoch: 943 2023-02-12 14:37:12,676 32k INFO ====> Epoch: 944 2023-02-12 14:37:24,622 32k INFO ====> Epoch: 945 2023-02-12 14:37:36,806 32k INFO ====> Epoch: 946 2023-02-12 14:37:48,860 32k INFO ====> Epoch: 947 2023-02-12 14:38:15,470 32k INFO ====> Epoch: 948 2023-02-12 14:38:27,465 32k INFO ====> Epoch: 949 2023-02-12 14:38:39,494 32k INFO ====> Epoch: 950 2023-02-12 14:38:51,476 32k INFO ====> Epoch: 951 2023-02-12 14:39:03,448 32k INFO ====> Epoch: 952 2023-02-12 14:39:15,382 32k INFO ====> Epoch: 953 2023-02-12 14:39:27,371 32k INFO ====> Epoch: 954 2023-02-12 14:39:39,335 32k INFO ====> Epoch: 955 2023-02-12 14:39:51,477 32k INFO ====> Epoch: 956 2023-02-12 14:40:03,418 32k INFO ====> Epoch: 957 2023-02-12 14:40:15,410 32k INFO ====> Epoch: 958 2023-02-12 14:40:27,341 32k INFO ====> Epoch: 959 2023-02-12 14:40:39,315 32k INFO ====> Epoch: 960 2023-02-12 14:40:43,363 32k INFO Train Epoch: 961 [0%] 2023-02-12 14:40:43,363 32k INFO [1.9441425800323486, 2.9773032665252686, 21.396255493164062, 21.15244483947754, 1.0561350584030151, 9600, 8.868029200613832e-05] 2023-02-12 14:40:51,598 32k INFO ====> Epoch: 961 2023-02-12 14:41:03,626 32k INFO ====> Epoch: 962 2023-02-12 14:41:15,549 32k INFO ====> Epoch: 963 2023-02-12 14:41:27,507 32k INFO ====> Epoch: 964 2023-02-12 14:41:39,542 32k INFO ====> Epoch: 965 2023-02-12 14:41:51,524 32k INFO ====> Epoch: 966 2023-02-12 14:42:03,498 32k INFO ====> Epoch: 967 2023-02-12 14:42:15,485 32k INFO ====> Epoch: 968 2023-02-12 14:42:27,466 32k INFO ====> Epoch: 969 2023-02-12 14:42:39,487 32k INFO ====> Epoch: 970 2023-02-12 14:42:51,443 32k INFO ====> Epoch: 971 2023-02-12 14:43:03,462 32k INFO ====> Epoch: 972 2023-02-12 14:43:15,461 32k INFO ====> Epoch: 973 2023-02-12 14:43:27,439 32k INFO ====> Epoch: 974 2023-02-12 14:43:39,481 32k INFO ====> Epoch: 975 2023-02-12 14:43:51,496 32k INFO ====> Epoch: 976 2023-02-12 14:44:03,551 32k INFO ====> Epoch: 977 2023-02-12 14:44:15,544 32k INFO ====> Epoch: 978 2023-02-12 14:44:27,494 32k INFO ====> Epoch: 979 2023-02-12 14:44:39,490 32k INFO ====> Epoch: 980 2023-02-12 14:44:43,532 32k INFO Train Epoch: 981 [0%] 2023-02-12 14:44:43,533 32k INFO [1.812034249305725, 3.1815125942230225, 19.23277473449707, 19.76807975769043, 0.9109163284301758, 9800, 8.845885434839242e-05] 2023-02-12 14:44:51,775 32k INFO ====> Epoch: 981 2023-02-12 14:45:03,769 32k INFO ====> Epoch: 982 2023-02-12 14:45:15,763 32k INFO ====> Epoch: 983 2023-02-12 14:45:27,745 32k INFO ====> Epoch: 984 2023-02-12 14:45:39,764 32k INFO ====> Epoch: 985 2023-02-12 14:45:51,789 32k INFO ====> Epoch: 986 2023-02-12 14:46:03,755 32k INFO ====> Epoch: 987 2023-02-12 14:46:15,776 32k INFO ====> Epoch: 988 2023-02-12 14:46:27,829 32k INFO ====> Epoch: 989 2023-02-12 14:46:39,797 32k INFO ====> Epoch: 990 2023-02-12 14:46:51,739 32k INFO ====> Epoch: 991 2023-02-12 14:47:03,730 32k INFO ====> Epoch: 992 2023-02-12 14:47:15,723 32k INFO ====> Epoch: 993 2023-02-12 14:47:27,749 32k INFO ====> Epoch: 994 2023-02-12 14:47:39,764 32k INFO ====> Epoch: 995 2023-02-12 14:47:51,743 32k INFO ====> Epoch: 996 2023-02-12 14:48:03,725 32k INFO ====> Epoch: 997 2023-02-12 14:48:15,686 32k INFO ====> Epoch: 998 2023-02-12 14:48:27,734 32k INFO ====> Epoch: 999 2023-02-12 14:48:39,754 32k INFO ====> Epoch: 1000 2023-02-12 14:48:43,794 32k INFO Train Epoch: 1001 [0%] 2023-02-12 14:48:43,794 32k INFO [1.8575782775878906, 3.2266526222229004, 21.58717918395996, 20.1503849029541, 0.5699613094329834, 10000, 8.823796962789062e-05] 2023-02-12 14:48:47,796 32k INFO Saving model and optimizer state at iteration 1001 to ./logs\32k\G_10000.pth 2023-02-12 14:49:05,105 32k INFO Saving model and optimizer state at iteration 1001 to ./logs\32k\D_10000.pth 2023-02-12 14:49:17,665 32k INFO ====> Epoch: 1001 2023-02-12 14:49:30,015 32k INFO ====> Epoch: 1002 2023-02-12 14:49:41,799 32k INFO ====> Epoch: 1003 2023-02-12 14:49:53,593 32k INFO ====> Epoch: 1004 2023-02-12 14:50:05,317 32k INFO ====> Epoch: 1005 2023-02-12 14:50:17,071 32k INFO ====> Epoch: 1006 2023-02-12 14:50:28,846 32k INFO ====> Epoch: 1007 2023-02-12 14:50:40,616 32k INFO ====> Epoch: 1008 2023-02-12 14:50:52,368 32k INFO ====> Epoch: 1009 2023-02-12 14:51:04,166 32k INFO ====> Epoch: 1010 2023-02-12 14:51:15,941 32k INFO ====> Epoch: 1011 2023-02-12 14:51:27,691 32k INFO ====> Epoch: 1012 2023-02-12 14:51:39,436 32k INFO ====> Epoch: 1013 2023-02-12 14:51:51,315 32k INFO ====> Epoch: 1014 2023-02-12 14:52:03,154 32k INFO ====> Epoch: 1015 2023-02-12 14:52:14,955 32k INFO ====> Epoch: 1016 2023-02-12 14:52:26,705 32k INFO ====> Epoch: 1017 2023-02-12 14:52:38,476 32k INFO ====> Epoch: 1018 2023-02-12 14:52:50,225 32k INFO ====> Epoch: 1019 2023-02-12 14:53:02,055 32k INFO ====> Epoch: 1020 2023-02-12 14:53:06,046 32k INFO Train Epoch: 1021 [0%] 2023-02-12 14:53:06,047 32k INFO [1.969978928565979, 3.3099782466888428, 22.197229385375977, 20.716018676757812, 0.9520759582519531, 10200, 8.801763646393014e-05] 2023-02-12 14:53:14,234 32k INFO ====> Epoch: 1021 2023-02-12 14:53:26,028 32k INFO ====> Epoch: 1022 2023-02-12 14:53:37,769 32k INFO ====> Epoch: 1023 2023-02-12 14:53:49,693 32k INFO ====> Epoch: 1024 2023-02-12 14:54:01,467 32k INFO ====> Epoch: 1025 2023-02-12 14:54:13,256 32k INFO ====> Epoch: 1026 2023-02-12 14:54:25,022 32k INFO ====> Epoch: 1027 2023-02-12 14:54:36,824 32k INFO ====> Epoch: 1028 2023-02-12 14:54:48,562 32k INFO ====> Epoch: 1029 2023-02-12 14:55:00,346 32k INFO ====> Epoch: 1030 2023-02-12 14:55:12,134 32k INFO ====> Epoch: 1031 2023-02-12 14:55:23,927 32k INFO ====> Epoch: 1032 2023-02-12 14:55:35,702 32k INFO ====> Epoch: 1033 2023-02-12 14:55:47,505 32k INFO ====> Epoch: 1034 2023-02-12 14:55:59,297 32k INFO ====> Epoch: 1035 2023-02-12 14:56:11,084 32k INFO ====> Epoch: 1036 2023-02-12 14:56:22,879 32k INFO ====> Epoch: 1037 2023-02-12 14:56:34,670 32k INFO ====> Epoch: 1038 2023-02-12 14:56:46,480 32k INFO ====> Epoch: 1039 2023-02-12 14:56:58,233 32k INFO ====> Epoch: 1040 2023-02-12 14:57:02,230 32k INFO Train Epoch: 1041 [0%] 2023-02-12 14:57:02,231 32k INFO [1.8475368022918701, 3.2396199703216553, 20.34634780883789, 20.80779266357422, 0.1730145364999771, 10400, 8.779785347925579e-05] 2023-02-12 14:57:10,645 32k INFO ====> Epoch: 1041 2023-02-12 14:57:22,463 32k INFO ====> Epoch: 1042 2023-02-12 14:57:34,280 32k INFO ====> Epoch: 1043 2023-02-12 14:57:46,068 32k INFO ====> Epoch: 1044 2023-02-12 14:57:58,020 32k INFO ====> Epoch: 1045 2023-02-12 14:58:09,798 32k INFO ====> Epoch: 1046 2023-02-12 14:58:21,590 32k INFO ====> Epoch: 1047 2023-02-12 14:58:33,410 32k INFO ====> Epoch: 1048 2023-02-12 14:58:45,209 32k INFO ====> Epoch: 1049 2023-02-12 14:58:57,012 32k INFO ====> Epoch: 1050 2023-02-12 14:59:08,797 32k INFO ====> Epoch: 1051 2023-02-12 14:59:20,538 32k INFO ====> Epoch: 1052 2023-02-12 14:59:32,354 32k INFO ====> Epoch: 1053 2023-02-12 14:59:44,150 32k INFO ====> Epoch: 1054 2023-02-12 14:59:55,928 32k INFO ====> Epoch: 1055 2023-02-12 15:00:07,729 32k INFO ====> Epoch: 1056 2023-02-12 15:00:19,515 32k INFO ====> Epoch: 1057 2023-02-12 15:00:31,296 32k INFO ====> Epoch: 1058 2023-02-12 15:00:43,080 32k INFO ====> Epoch: 1059 2023-02-12 15:00:54,852 32k INFO ====> Epoch: 1060 2023-02-12 15:00:58,838 32k INFO Train Epoch: 1061 [0%] 2023-02-12 15:00:58,839 32k INFO [1.9275860786437988, 3.214001417160034, 17.869892120361328, 18.476543426513672, 0.5841421484947205, 10600, 8.75786193000515e-05] 2023-02-12 15:01:07,027 32k INFO ====> Epoch: 1061 2023-02-12 15:01:18,808 32k INFO ====> Epoch: 1062 2023-02-12 15:01:30,608 32k INFO ====> Epoch: 1063 2023-02-12 15:01:42,435 32k INFO ====> Epoch: 1064 2023-02-12 15:01:54,221 32k INFO ====> Epoch: 1065 2023-02-12 15:02:06,025 32k INFO ====> Epoch: 1066 2023-02-12 15:02:17,843 32k INFO ====> Epoch: 1067 2023-02-12 15:02:29,583 32k INFO ====> Epoch: 1068 2023-02-12 15:02:41,405 32k INFO ====> Epoch: 1069 2023-02-12 15:02:53,191 32k INFO ====> Epoch: 1070 2023-02-12 15:03:04,997 32k INFO ====> Epoch: 1071 2023-02-12 15:03:16,748 32k INFO ====> Epoch: 1072 2023-02-12 15:03:28,527 32k INFO ====> Epoch: 1073 2023-02-12 15:03:40,315 32k INFO ====> Epoch: 1074 2023-02-12 15:03:52,154 32k INFO ====> Epoch: 1075 2023-02-12 15:04:04,046 32k INFO ====> Epoch: 1076 2023-02-12 15:04:15,812 32k INFO ====> Epoch: 1077 2023-02-12 15:04:27,640 32k INFO ====> Epoch: 1078 2023-02-12 15:04:39,428 32k INFO ====> Epoch: 1079 2023-02-12 15:04:51,217 32k INFO ====> Epoch: 1080 2023-02-12 15:04:55,228 32k INFO Train Epoch: 1081 [0%] 2023-02-12 15:04:55,229 32k INFO [1.6546056270599365, 3.431957960128784, 23.878787994384766, 21.629281997680664, 0.8686769008636475, 10800, 8.735993255593163e-05] 2023-02-12 15:05:03,333 32k INFO ====> Epoch: 1081 2023-02-12 15:05:15,166 32k INFO ====> Epoch: 1082 2023-02-12 15:05:26,998 32k INFO ====> Epoch: 1083 2023-02-12 15:05:38,796 32k INFO ====> Epoch: 1084 2023-02-12 15:05:50,587 32k INFO ====> Epoch: 1085 2023-02-12 15:06:02,394 32k INFO ====> Epoch: 1086 2023-02-12 15:06:14,177 32k INFO ====> Epoch: 1087 2023-02-12 15:06:25,959 32k INFO ====> Epoch: 1088 2023-02-12 15:06:37,714 32k INFO ====> Epoch: 1089 2023-02-12 15:06:49,435 32k INFO ====> Epoch: 1090 2023-02-12 15:07:01,215 32k INFO ====> Epoch: 1091 2023-02-12 15:07:13,037 32k INFO ====> Epoch: 1092 2023-02-12 15:07:24,817 32k INFO ====> Epoch: 1093 2023-02-12 15:07:36,590 32k INFO ====> Epoch: 1094 2023-02-12 15:07:48,402 32k INFO ====> Epoch: 1095 2023-02-12 15:08:00,233 32k INFO ====> Epoch: 1096 2023-02-12 15:08:12,025 32k INFO ====> Epoch: 1097 2023-02-12 15:08:23,838 32k INFO ====> Epoch: 1098 2023-02-12 15:08:35,650 32k INFO ====> Epoch: 1099 2023-02-12 15:08:47,410 32k INFO ====> Epoch: 1100 2023-02-12 15:08:51,413 32k INFO Train Epoch: 1101 [0%] 2023-02-12 15:08:51,413 32k INFO [1.6967860460281372, 3.0881154537200928, 21.32900047302246, 20.41789436340332, 0.7912378311157227, 11000, 8.714179187993246e-05] 2023-02-12 15:08:55,447 32k INFO Saving model and optimizer state at iteration 1101 to ./logs\32k\G_11000.pth 2023-02-12 15:09:10,589 32k INFO Saving model and optimizer state at iteration 1101 to ./logs\32k\D_11000.pth 2023-02-12 15:09:22,285 32k INFO ====> Epoch: 1101 2023-02-12 15:09:34,615 32k INFO ====> Epoch: 1102 2023-02-12 15:09:46,387 32k INFO ====> Epoch: 1103 2023-02-12 15:09:58,182 32k INFO ====> Epoch: 1104 2023-02-12 15:10:10,581 32k INFO ====> Epoch: 1105 2023-02-12 15:10:22,819 32k INFO ====> Epoch: 1106 2023-02-12 15:10:34,689 32k INFO ====> Epoch: 1107 2023-02-12 15:10:46,617 32k INFO ====> Epoch: 1108 2023-02-12 15:10:58,482 32k INFO ====> Epoch: 1109 2023-02-12 15:11:10,287 32k INFO ====> Epoch: 1110 2023-02-12 15:11:22,259 32k INFO ====> Epoch: 1111 2023-02-12 15:11:34,191 32k INFO ====> Epoch: 1112 2023-02-12 15:11:46,096 32k INFO ====> Epoch: 1113 2023-02-12 15:11:58,088 32k INFO ====> Epoch: 1114 2023-02-12 15:12:09,985 32k INFO ====> Epoch: 1115 2023-02-12 15:12:21,699 32k INFO ====> Epoch: 1116 2023-02-12 15:12:33,465 32k INFO ====> Epoch: 1117 2023-02-12 15:12:45,227 32k INFO ====> Epoch: 1118 2023-02-12 15:12:57,087 32k INFO ====> Epoch: 1119 2023-02-12 15:13:08,900 32k INFO ====> Epoch: 1120 2023-02-12 15:13:12,876 32k INFO Train Epoch: 1121 [0%] 2023-02-12 15:13:12,877 32k INFO [2.064385414123535, 3.3436312675476074, 20.797239303588867, 17.69752311706543, 0.6319724917411804, 11200, 8.692419590850362e-05] 2023-02-12 15:13:20,985 32k INFO ====> Epoch: 1121 2023-02-12 15:13:32,780 32k INFO ====> Epoch: 1122 2023-02-12 15:13:44,560 32k INFO ====> Epoch: 1123 2023-02-12 15:13:56,361 32k INFO ====> Epoch: 1124 2023-02-12 15:14:08,144 32k INFO ====> Epoch: 1125 2023-02-12 15:14:19,982 32k INFO ====> Epoch: 1126 2023-02-12 15:14:31,687 32k INFO ====> Epoch: 1127 2023-02-12 15:14:43,437 32k INFO ====> Epoch: 1128 2023-02-12 15:14:55,204 32k INFO ====> Epoch: 1129 2023-02-12 15:15:07,041 32k INFO ====> Epoch: 1130 2023-02-12 15:15:18,867 32k INFO ====> Epoch: 1131 2023-02-12 15:15:30,634 32k INFO ====> Epoch: 1132 2023-02-12 15:15:42,495 32k INFO ====> Epoch: 1133 2023-02-12 15:15:54,327 32k INFO ====> Epoch: 1134 2023-02-12 15:16:06,123 32k INFO ====> Epoch: 1135 2023-02-12 15:16:17,917 32k INFO ====> Epoch: 1136 2023-02-12 15:16:29,716 32k INFO ====> Epoch: 1137 2023-02-12 15:16:41,506 32k INFO ====> Epoch: 1138 2023-02-12 15:16:53,315 32k INFO ====> Epoch: 1139 2023-02-12 15:17:05,161 32k INFO ====> Epoch: 1140 2023-02-12 15:17:09,216 32k INFO Train Epoch: 1141 [0%] 2023-02-12 15:17:09,216 32k INFO [1.7398513555526733, 3.237757682800293, 20.018566131591797, 18.319841384887695, 0.7208283543586731, 11400, 8.670714328149953e-05] 2023-02-12 15:17:17,414 32k INFO ====> Epoch: 1141 2023-02-12 15:17:29,161 32k INFO ====> Epoch: 1142 2023-02-12 15:17:40,922 32k INFO ====> Epoch: 1143 2023-02-12 15:17:52,622 32k INFO ====> Epoch: 1144 2023-02-12 15:18:04,399 32k INFO ====> Epoch: 1145 2023-02-12 15:18:16,191 32k INFO ====> Epoch: 1146 2023-02-12 15:18:27,982 32k INFO ====> Epoch: 1147 2023-02-12 15:18:39,739 32k INFO ====> Epoch: 1148 2023-02-12 15:18:51,523 32k INFO ====> Epoch: 1149 2023-02-12 15:19:03,373 32k INFO ====> Epoch: 1150 2023-02-12 15:19:15,143 32k INFO ====> Epoch: 1151 2023-02-12 15:19:26,981 32k INFO ====> Epoch: 1152 2023-02-12 15:19:38,776 32k INFO ====> Epoch: 1153 2023-02-12 15:19:50,555 32k INFO ====> Epoch: 1154 2023-02-12 15:20:02,352 32k INFO ====> Epoch: 1155 2023-02-12 15:20:14,148 32k INFO ====> Epoch: 1156 2023-02-12 15:20:25,953 32k INFO ====> Epoch: 1157 2023-02-12 15:20:37,735 32k INFO ====> Epoch: 1158 2023-02-12 15:20:49,569 32k INFO ====> Epoch: 1159 2023-02-12 15:21:01,340 32k INFO ====> Epoch: 1160 2023-02-12 15:21:05,333 32k INFO Train Epoch: 1161 [0%] 2023-02-12 15:21:05,333 32k INFO [1.8517743349075317, 3.1895899772644043, 20.230409622192383, 19.716575622558594, 0.8846036195755005, 11600, 8.649063264217098e-05] 2023-02-12 15:21:13,427 32k INFO ====> Epoch: 1161 2023-02-12 15:21:25,189 32k INFO ====> Epoch: 1162 2023-02-12 15:21:37,017 32k INFO ====> Epoch: 1163 2023-02-12 15:21:48,813 32k INFO ====> Epoch: 1164 2023-02-12 15:22:00,606 32k INFO ====> Epoch: 1165 2023-02-12 15:22:12,341 32k INFO ====> Epoch: 1166 2023-02-12 15:22:24,140 32k INFO ====> Epoch: 1167 2023-02-12 15:22:35,958 32k INFO ====> Epoch: 1168 2023-02-12 15:22:47,753 32k INFO ====> Epoch: 1169 2023-02-12 15:22:59,718 32k INFO ====> Epoch: 1170 2023-02-12 15:23:11,511 32k INFO ====> Epoch: 1171 2023-02-12 15:23:23,286 32k INFO ====> Epoch: 1172 2023-02-12 15:23:35,055 32k INFO ====> Epoch: 1173 2023-02-12 15:23:46,835 32k INFO ====> Epoch: 1174 2023-02-12 15:23:58,584 32k INFO ====> Epoch: 1175 2023-02-12 15:24:10,388 32k INFO ====> Epoch: 1176 2023-02-12 15:24:22,202 32k INFO ====> Epoch: 1177 2023-02-12 15:24:34,013 32k INFO ====> Epoch: 1178 2023-02-12 15:24:46,197 32k INFO ====> Epoch: 1179 2023-02-12 15:24:58,135 32k INFO ====> Epoch: 1180 2023-02-12 15:25:02,233 32k INFO Train Epoch: 1181 [0%] 2023-02-12 15:25:02,234 32k INFO [1.9411377906799316, 3.3260269165039062, 20.635011672973633, 17.542858123779297, 0.5514277219772339, 11800, 8.627466263715663e-05] 2023-02-12 15:25:10,313 32k INFO ====> Epoch: 1181 2023-02-12 15:25:22,209 32k INFO ====> Epoch: 1182 2023-02-12 15:25:34,029 32k INFO ====> Epoch: 1183 2023-02-12 15:25:45,928 32k INFO ====> Epoch: 1184 2023-02-12 15:25:57,688 32k INFO ====> Epoch: 1185 2023-02-12 15:26:09,457 32k INFO ====> Epoch: 1186 2023-02-12 15:26:21,278 32k INFO ====> Epoch: 1187 2023-02-12 15:26:33,090 32k INFO ====> Epoch: 1188 2023-02-12 15:26:45,070 32k INFO ====> Epoch: 1189 2023-02-12 15:26:56,889 32k INFO ====> Epoch: 1190 2023-02-12 15:27:08,835 32k INFO ====> Epoch: 1191 2023-02-12 15:27:20,693 32k INFO ====> Epoch: 1192 2023-02-12 15:27:32,543 32k INFO ====> Epoch: 1193 2023-02-12 15:27:44,349 32k INFO ====> Epoch: 1194 2023-02-12 15:27:56,232 32k INFO ====> Epoch: 1195 2023-02-12 15:28:08,062 32k INFO ====> Epoch: 1196 2023-02-12 15:28:19,836 32k INFO ====> Epoch: 1197 2023-02-12 15:28:31,604 32k INFO ====> Epoch: 1198 2023-02-12 15:28:43,383 32k INFO ====> Epoch: 1199 2023-02-12 15:28:55,170 32k INFO ====> Epoch: 1200 2023-02-12 15:28:59,181 32k INFO Train Epoch: 1201 [0%] 2023-02-12 15:28:59,181 32k INFO [1.7774322032928467, 3.481269121170044, 26.027238845825195, 20.089521408081055, 0.9175114035606384, 12000, 8.605923191647444e-05] 2023-02-12 15:29:03,115 32k INFO Saving model and optimizer state at iteration 1201 to ./logs\32k\G_12000.pth 2023-02-12 15:29:17,066 32k INFO Saving model and optimizer state at iteration 1201 to ./logs\32k\D_12000.pth 2023-02-12 15:29:28,779 32k INFO ====> Epoch: 1201 2023-02-12 15:29:41,020 32k INFO ====> Epoch: 1202 2023-02-12 15:29:52,878 32k INFO ====> Epoch: 1203 2023-02-12 15:30:04,726 32k INFO ====> Epoch: 1204 2023-02-12 15:30:16,621 32k INFO ====> Epoch: 1205 2023-02-12 15:30:28,492 32k INFO ====> Epoch: 1206 2023-02-12 15:30:40,272 32k INFO ====> Epoch: 1207 2023-02-12 15:30:52,052 32k INFO ====> Epoch: 1208 2023-02-12 15:31:03,819 32k INFO ====> Epoch: 1209 2023-02-12 15:31:15,585 32k INFO ====> Epoch: 1210 2023-02-12 15:31:27,393 32k INFO ====> Epoch: 1211 2023-02-12 15:31:39,278 32k INFO ====> Epoch: 1212 2023-02-12 15:31:51,133 32k INFO ====> Epoch: 1213 2023-02-12 15:32:02,966 32k INFO ====> Epoch: 1214 2023-02-12 15:32:14,732 32k INFO ====> Epoch: 1215 2023-02-12 15:32:26,513 32k INFO ====> Epoch: 1216 2023-02-12 15:32:38,335 32k INFO ====> Epoch: 1217 2023-02-12 15:32:50,225 32k INFO ====> Epoch: 1218 2023-02-12 15:33:02,115 32k INFO ====> Epoch: 1219 2023-02-12 15:33:13,896 32k INFO ====> Epoch: 1220 2023-02-12 15:33:17,840 32k INFO Train Epoch: 1221 [0%] 2023-02-12 15:33:17,841 32k INFO [2.010641574859619, 3.1379950046539307, 19.937978744506836, 17.576082229614258, 0.9196208119392395, 12200, 8.584433913351344e-05] 2023-02-12 15:33:26,027 32k INFO ====> Epoch: 1221 2023-02-12 15:33:37,846 32k INFO ====> Epoch: 1222 2023-02-12 15:33:49,617 32k INFO ====> Epoch: 1223 2023-02-12 15:34:01,463 32k INFO ====> Epoch: 1224 2023-02-12 15:34:13,362 32k INFO ====> Epoch: 1225 2023-02-12 15:34:25,144 32k INFO ====> Epoch: 1226 2023-02-12 15:34:36,924 32k INFO ====> Epoch: 1227 2023-02-12 15:34:48,729 32k INFO ====> Epoch: 1228 2023-02-12 15:35:00,528 32k INFO ====> Epoch: 1229 2023-02-12 15:35:12,433 32k INFO ====> Epoch: 1230 2023-02-12 15:35:24,266 32k INFO ====> Epoch: 1231 2023-02-12 15:35:36,075 32k INFO ====> Epoch: 1232 2023-02-12 15:35:47,930 32k INFO ====> Epoch: 1233 2023-02-12 15:35:59,726 32k INFO ====> Epoch: 1234 2023-02-12 15:36:11,548 32k INFO ====> Epoch: 1235 2023-02-12 15:36:23,295 32k INFO ====> Epoch: 1236 2023-02-12 15:36:35,101 32k INFO ====> Epoch: 1237 2023-02-12 15:36:46,887 32k INFO ====> Epoch: 1238 2023-02-12 15:36:58,670 32k INFO ====> Epoch: 1239 2023-02-12 15:37:10,460 32k INFO ====> Epoch: 1240 2023-02-12 15:37:14,450 32k INFO Train Epoch: 1241 [0%] 2023-02-12 15:37:14,450 32k INFO [1.6771478652954102, 3.300658941268921, 21.90500831604004, 20.171859741210938, 0.509969174861908, 12400, 8.562998294502507e-05] 2023-02-12 15:37:22,535 32k INFO ====> Epoch: 1241 2023-02-12 15:37:34,303 32k INFO ====> Epoch: 1242 2023-02-12 15:37:46,098 32k INFO ====> Epoch: 1243 2023-02-12 15:37:57,889 32k INFO ====> Epoch: 1244 2023-02-12 15:38:09,660 32k INFO ====> Epoch: 1245 2023-02-12 15:38:21,480 32k INFO ====> Epoch: 1246 2023-02-12 15:38:33,254 32k INFO ====> Epoch: 1247 2023-02-12 15:38:45,076 32k INFO ====> Epoch: 1248 2023-02-12 15:38:56,951 32k INFO ====> Epoch: 1249 2023-02-12 15:39:08,786 32k INFO ====> Epoch: 1250 2023-02-12 15:39:20,601 32k INFO ====> Epoch: 1251 2023-02-12 15:39:32,403 32k INFO ====> Epoch: 1252 2023-02-12 15:39:44,197 32k INFO ====> Epoch: 1253 2023-02-12 15:39:56,077 32k INFO ====> Epoch: 1254 2023-02-12 15:40:07,858 32k INFO ====> Epoch: 1255 2023-02-12 15:40:19,720 32k INFO ====> Epoch: 1256 2023-02-12 15:40:31,470 32k INFO ====> Epoch: 1257 2023-02-12 15:40:43,242 32k INFO ====> Epoch: 1258 2023-02-12 15:40:55,061 32k INFO ====> Epoch: 1259 2023-02-12 15:41:07,028 32k INFO ====> Epoch: 1260 2023-02-12 15:41:10,996 32k INFO Train Epoch: 1261 [0%] 2023-02-12 15:41:10,997 32k INFO [1.753708839416504, 3.1686413288116455, 23.707977294921875, 18.282379150390625, 0.6658338308334351, 12600, 8.541616201111502e-05] 2023-02-12 15:41:19,110 32k INFO ====> Epoch: 1261 2023-02-12 15:41:30,897 32k INFO ====> Epoch: 1262 2023-02-12 15:41:42,795 32k INFO ====> Epoch: 1263 2023-02-12 15:41:54,572 32k INFO ====> Epoch: 1264 2023-02-12 15:42:06,357 32k INFO ====> Epoch: 1265 2023-02-12 15:42:18,139 32k INFO ====> Epoch: 1266 2023-02-12 15:42:29,999 32k INFO ====> Epoch: 1267 2023-02-12 15:42:41,787 32k INFO ====> Epoch: 1268 2023-02-12 15:42:53,549 32k INFO ====> Epoch: 1269 2023-02-12 15:43:05,352 32k INFO ====> Epoch: 1270 2023-02-12 15:43:17,079 32k INFO ====> Epoch: 1271 2023-02-12 15:43:28,835 32k INFO ====> Epoch: 1272 2023-02-12 15:43:40,597 32k INFO ====> Epoch: 1273 2023-02-12 15:43:52,340 32k INFO ====> Epoch: 1274 2023-02-12 15:44:04,110 32k INFO ====> Epoch: 1275 2023-02-12 15:44:15,936 32k INFO ====> Epoch: 1276 2023-02-12 15:44:27,817 32k INFO ====> Epoch: 1277 2023-02-12 15:44:39,572 32k INFO ====> Epoch: 1278 2023-02-12 15:44:51,381 32k INFO ====> Epoch: 1279 2023-02-12 15:45:03,173 32k INFO ====> Epoch: 1280 2023-02-12 15:45:07,177 32k INFO Train Epoch: 1281 [0%] 2023-02-12 15:45:07,177 32k INFO [1.7234199047088623, 3.08119797706604, 20.67536735534668, 17.942367553710938, 0.9086747765541077, 12800, 8.52028749952347e-05] 2023-02-12 15:45:15,257 32k INFO ====> Epoch: 1281 2023-02-12 15:45:27,011 32k INFO ====> Epoch: 1282 2023-02-12 15:45:38,805 32k INFO ====> Epoch: 1283 2023-02-12 15:45:50,610 32k INFO ====> Epoch: 1284 2023-02-12 15:46:02,417 32k INFO ====> Epoch: 1285 2023-02-12 15:46:14,193 32k INFO ====> Epoch: 1286 2023-02-12 15:46:25,982 32k INFO ====> Epoch: 1287 2023-02-12 15:46:37,694 32k INFO ====> Epoch: 1288 2023-02-12 15:46:49,478 32k INFO ====> Epoch: 1289 2023-02-12 15:47:01,280 32k INFO ====> Epoch: 1290 2023-02-12 15:47:13,081 32k INFO ====> Epoch: 1291 2023-02-12 15:47:24,868 32k INFO ====> Epoch: 1292 2023-02-12 15:47:36,613 32k INFO ====> Epoch: 1293 2023-02-12 15:47:48,397 32k INFO ====> Epoch: 1294 2023-02-12 15:48:00,253 32k INFO ====> Epoch: 1295 2023-02-12 15:48:12,115 32k INFO ====> Epoch: 1296 2023-02-12 15:48:23,906 32k INFO ====> Epoch: 1297 2023-02-12 15:48:35,685 32k INFO ====> Epoch: 1298 2023-02-12 15:48:47,428 32k INFO ====> Epoch: 1299 2023-02-12 15:48:59,231 32k INFO ====> Epoch: 1300 2023-02-12 15:49:03,239 32k INFO Train Epoch: 1301 [0%] 2023-02-12 15:49:03,240 32k INFO [1.8812379837036133, 3.4515433311462402, 22.568906784057617, 21.513614654541016, 0.9147152304649353, 13000, 8.499012056417291e-05] 2023-02-12 15:49:07,201 32k INFO Saving model and optimizer state at iteration 1301 to ./logs\32k\G_13000.pth 2023-02-12 15:49:25,205 32k INFO Saving model and optimizer state at iteration 1301 to ./logs\32k\D_13000.pth 2023-02-12 15:49:36,732 32k INFO ====> Epoch: 1301 2023-02-12 15:49:49,000 32k INFO ====> Epoch: 1302 2023-02-12 15:50:00,751 32k INFO ====> Epoch: 1303 2023-02-12 15:50:12,575 32k INFO ====> Epoch: 1304 2023-02-12 15:50:24,423 32k INFO ====> Epoch: 1305 2023-02-12 15:50:36,197 32k INFO ====> Epoch: 1306 2023-02-12 15:50:47,987 32k INFO ====> Epoch: 1307 2023-02-12 15:50:59,734 32k INFO ====> Epoch: 1308 2023-02-12 15:51:11,550 32k INFO ====> Epoch: 1309 2023-02-12 15:51:23,317 32k INFO ====> Epoch: 1310 2023-02-12 15:51:35,080 32k INFO ====> Epoch: 1311 2023-02-12 15:51:46,817 32k INFO ====> Epoch: 1312 2023-02-12 15:51:58,579 32k INFO ====> Epoch: 1313 2023-02-12 15:52:10,338 32k INFO ====> Epoch: 1314 2023-02-12 15:52:22,140 32k INFO ====> Epoch: 1315 2023-02-12 15:52:33,928 32k INFO ====> Epoch: 1316 2023-02-12 15:52:45,714 32k INFO ====> Epoch: 1317 2023-02-12 15:52:57,488 32k INFO ====> Epoch: 1318 2023-02-12 15:53:09,261 32k INFO ====> Epoch: 1319 2023-02-12 15:53:21,058 32k INFO ====> Epoch: 1320 2023-02-12 15:53:25,125 32k INFO Train Epoch: 1321 [0%] 2023-02-12 15:53:25,125 32k INFO [1.8744864463806152, 3.320587396621704, 18.410367965698242, 17.364992141723633, 1.0555418729782104, 13200, 8.477789738804749e-05] 2023-02-12 15:53:33,201 32k INFO ====> Epoch: 1321 2023-02-12 15:53:45,069 32k INFO ====> Epoch: 1322 2023-02-12 15:53:56,880 32k INFO ====> Epoch: 1323 2023-02-12 15:54:08,660 32k INFO ====> Epoch: 1324 2023-02-12 15:54:20,455 32k INFO ====> Epoch: 1325 2023-02-12 15:54:32,240 32k INFO ====> Epoch: 1326 2023-02-12 15:54:44,161 32k INFO ====> Epoch: 1327 2023-02-12 15:54:56,019 32k INFO ====> Epoch: 1328 2023-02-12 15:55:07,855 32k INFO ====> Epoch: 1329 2023-02-12 15:55:19,581 32k INFO ====> Epoch: 1330 2023-02-12 15:55:31,391 32k INFO ====> Epoch: 1331 2023-02-12 15:55:43,200 32k INFO ====> Epoch: 1332 2023-02-12 15:55:54,983 32k INFO ====> Epoch: 1333 2023-02-12 15:56:06,757 32k INFO ====> Epoch: 1334 2023-02-12 15:56:18,509 32k INFO ====> Epoch: 1335 2023-02-12 15:56:30,353 32k INFO ====> Epoch: 1336 2023-02-12 15:56:42,154 32k INFO ====> Epoch: 1337 2023-02-12 15:56:53,964 32k INFO ====> Epoch: 1338 2023-02-12 15:57:05,748 32k INFO ====> Epoch: 1339 2023-02-12 15:57:17,502 32k INFO ====> Epoch: 1340 2023-02-12 15:57:21,497 32k INFO Train Epoch: 1341 [0%] 2023-02-12 15:57:21,497 32k INFO [1.6354436874389648, 3.336968421936035, 23.863597869873047, 19.903148651123047, 0.6043044328689575, 13400, 8.456620414029713e-05] 2023-02-12 15:57:29,680 32k INFO ====> Epoch: 1341 2023-02-12 15:57:41,435 32k INFO ====> Epoch: 1342 2023-02-12 15:57:53,237 32k INFO ====> Epoch: 1343 2023-02-12 15:58:05,011 32k INFO ====> Epoch: 1344 2023-02-12 15:58:16,757 32k INFO ====> Epoch: 1345 2023-02-12 15:58:28,570 32k INFO ====> Epoch: 1346 2023-02-12 15:58:40,376 32k INFO ====> Epoch: 1347 2023-02-12 15:58:52,265 32k INFO ====> Epoch: 1348 2023-02-12 15:59:04,128 32k INFO ====> Epoch: 1349 2023-02-12 15:59:15,924 32k INFO ====> Epoch: 1350 2023-02-12 15:59:27,787 32k INFO ====> Epoch: 1351 2023-02-12 15:59:39,579 32k INFO ====> Epoch: 1352 2023-02-12 15:59:51,351 32k INFO ====> Epoch: 1353 2023-02-12 16:00:03,166 32k INFO ====> Epoch: 1354 2023-02-12 16:00:15,014 32k INFO ====> Epoch: 1355 2023-02-12 16:00:26,737 32k INFO ====> Epoch: 1356 2023-02-12 16:00:38,571 32k INFO ====> Epoch: 1357 2023-02-12 16:00:50,326 32k INFO ====> Epoch: 1358 2023-02-12 16:01:02,128 32k INFO ====> Epoch: 1359 2023-02-12 16:01:14,025 32k INFO ====> Epoch: 1360 2023-02-12 16:01:18,031 32k INFO Train Epoch: 1361 [0%] 2023-02-12 16:01:18,031 32k INFO [1.7485980987548828, 3.240476131439209, 19.417327880859375, 15.598264694213867, 0.5619482398033142, 13600, 8.43550394976729e-05] 2023-02-12 16:01:26,121 32k INFO ====> Epoch: 1361 2023-02-12 16:01:37,918 32k INFO ====> Epoch: 1362 2023-02-12 16:01:49,677 32k INFO ====> Epoch: 1363 2023-02-12 16:02:01,432 32k INFO ====> Epoch: 1364 2023-02-12 16:02:13,218 32k INFO ====> Epoch: 1365 2023-02-12 16:02:25,013 32k INFO ====> Epoch: 1366 2023-02-12 16:02:36,779 32k INFO ====> Epoch: 1367 2023-02-12 16:02:48,546 32k INFO ====> Epoch: 1368 2023-02-12 16:03:00,364 32k INFO ====> Epoch: 1369 2023-02-12 16:03:12,141 32k INFO ====> Epoch: 1370 2023-02-12 16:03:23,969 32k INFO ====> Epoch: 1371 2023-02-12 16:03:35,723 32k INFO ====> Epoch: 1372 2023-02-12 16:03:47,571 32k INFO ====> Epoch: 1373 2023-02-12 16:03:59,394 32k INFO ====> Epoch: 1374 2023-02-12 16:04:11,193 32k INFO ====> Epoch: 1375 2023-02-12 16:04:23,001 32k INFO ====> Epoch: 1376 2023-02-12 16:04:34,760 32k INFO ====> Epoch: 1377 2023-02-12 16:04:46,517 32k INFO ====> Epoch: 1378 2023-02-12 16:04:58,281 32k INFO ====> Epoch: 1379 2023-02-12 16:05:10,046 32k INFO ====> Epoch: 1380 2023-02-12 16:05:14,028 32k INFO Train Epoch: 1381 [0%] 2023-02-12 16:05:14,028 32k INFO [1.8243145942687988, 3.455235481262207, 21.25417709350586, 20.422574996948242, 0.8478912711143494, 13800, 8.41444021402301e-05] 2023-02-12 16:05:22,125 32k INFO ====> Epoch: 1381 2023-02-12 16:05:33,961 32k INFO ====> Epoch: 1382 2023-02-12 16:05:45,711 32k INFO ====> Epoch: 1383 2023-02-12 16:05:57,469 32k INFO ====> Epoch: 1384 2023-02-12 16:06:09,261 32k INFO ====> Epoch: 1385 2023-02-12 16:06:21,077 32k INFO ====> Epoch: 1386 2023-02-12 16:06:32,984 32k INFO ====> Epoch: 1387 2023-02-12 16:06:44,746 32k INFO ====> Epoch: 1388 2023-02-12 16:06:56,527 32k INFO ====> Epoch: 1389 2023-02-12 16:07:08,313 32k INFO ====> Epoch: 1390 2023-02-12 16:07:20,092 32k INFO ====> Epoch: 1391 2023-02-12 16:07:31,861 32k INFO ====> Epoch: 1392 2023-02-12 16:07:43,672 32k INFO ====> Epoch: 1393 2023-02-12 16:07:55,477 32k INFO ====> Epoch: 1394 2023-02-12 16:08:07,237 32k INFO ====> Epoch: 1395 2023-02-12 16:08:19,049 32k INFO ====> Epoch: 1396 2023-02-12 16:08:30,806 32k INFO ====> Epoch: 1397 2023-02-12 16:08:42,569 32k INFO ====> Epoch: 1398 2023-02-12 16:08:54,375 32k INFO ====> Epoch: 1399 2023-02-12 16:09:06,184 32k INFO ====> Epoch: 1400 2023-02-12 16:09:10,211 32k INFO Train Epoch: 1401 [0%] 2023-02-12 16:09:10,212 32k INFO [1.980910062789917, 2.867105007171631, 16.272972106933594, 16.36928367614746, 0.6712512969970703, 14000, 8.393429075132006e-05] 2023-02-12 16:09:14,146 32k INFO Saving model and optimizer state at iteration 1401 to ./logs\32k\G_14000.pth 2023-02-12 16:09:30,135 32k INFO Saving model and optimizer state at iteration 1401 to ./logs\32k\D_14000.pth 2023-02-12 16:09:41,839 32k INFO ====> Epoch: 1401 2023-02-12 16:09:54,126 32k INFO ====> Epoch: 1402 2023-02-12 16:10:05,910 32k INFO ====> Epoch: 1403 2023-02-12 16:10:17,680 32k INFO ====> Epoch: 1404 2023-02-12 16:10:29,419 32k INFO ====> Epoch: 1405 2023-02-12 16:10:41,212 32k INFO ====> Epoch: 1406 2023-02-12 16:10:52,958 32k INFO ====> Epoch: 1407 2023-02-12 16:11:04,986 32k INFO ====> Epoch: 1408 2023-02-12 16:11:16,698 32k INFO ====> Epoch: 1409 2023-02-12 16:11:28,500 32k INFO ====> Epoch: 1410 2023-02-12 16:11:40,246 32k INFO ====> Epoch: 1411 2023-02-12 16:11:52,138 32k INFO ====> Epoch: 1412 2023-02-12 16:12:03,964 32k INFO ====> Epoch: 1413 2023-02-12 16:12:15,662 32k INFO ====> Epoch: 1414 2023-02-12 16:12:27,435 32k INFO ====> Epoch: 1415 2023-02-12 16:12:39,184 32k INFO ====> Epoch: 1416 2023-02-12 16:12:50,978 32k INFO ====> Epoch: 1417 2023-02-12 16:13:02,745 32k INFO ====> Epoch: 1418 2023-02-12 16:13:14,535 32k INFO ====> Epoch: 1419 2023-02-12 16:13:26,361 32k INFO ====> Epoch: 1420 2023-02-12 16:13:30,324 32k INFO Train Epoch: 1421 [0%] 2023-02-12 16:13:30,325 32k INFO [1.7525862455368042, 3.5776731967926025, 23.730297088623047, 18.36430549621582, 1.0101344585418701, 14200, 8.372470401758169e-05] 2023-02-12 16:13:38,502 32k INFO ====> Epoch: 1421 2023-02-12 16:13:50,246 32k INFO ====> Epoch: 1422 2023-02-12 16:14:02,020 32k INFO ====> Epoch: 1423 2023-02-12 16:14:13,734 32k INFO ====> Epoch: 1424 2023-02-12 16:14:25,516 32k INFO ====> Epoch: 1425 2023-02-12 16:14:37,247 32k INFO ====> Epoch: 1426 2023-02-12 16:14:48,992 32k INFO ====> Epoch: 1427 2023-02-12 16:15:00,760 32k INFO ====> Epoch: 1428 2023-02-12 16:15:12,501 32k INFO ====> Epoch: 1429 2023-02-12 16:15:24,332 32k INFO ====> Epoch: 1430 2023-02-12 16:15:36,116 32k INFO ====> Epoch: 1431 2023-02-12 16:15:47,908 32k INFO ====> Epoch: 1432 2023-02-12 16:15:59,654 32k INFO ====> Epoch: 1433 2023-02-12 16:16:11,404 32k INFO ====> Epoch: 1434 2023-02-12 16:16:23,723 32k INFO ====> Epoch: 1435 2023-02-12 16:16:35,641 32k INFO ====> Epoch: 1436 2023-02-12 20:50:27,814 32k INFO ====> Epoch: 1437