--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper tiny en-US - J3v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14-en-US type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.33116883116883117 --- # whisper tiny en-US - J3v2 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14-en-US dataset. It achieves the following results on the evaluation set: - Loss: 0.7183 - Wer Ortho: 0.3381 - Wer: 0.3312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0012 | 17.86 | 500 | 0.7183 | 0.3381 | 0.3312 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3