--- library_name: transformers language: - en license: mit base_model: openai/whisper-large-v3-turbo tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - JacobLinCool/ami-disfluent metrics: - wer model-index: - name: whisper-large-v3-turbo-verbatim-3-lora results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: JacobLinCool/ami-disfluent type: JacobLinCool/ami-disfluent metrics: - type: wer value: 7.726913698959442 name: Wer --- # whisper-large-v3-turbo-verbatim-3-lora This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the JacobLinCool/ami-disfluent dataset. It achieves the following results on the evaluation set: - Loss: 0.1459 - Wer: 7.7269 - Cer: 3.2519 - Decode Runtime: 111.0004 - Wer Runtime: 0.0705 - Cer Runtime: 0.0932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:--------------:|:-----------:|:-----------:| | No log | 0 | 0 | 2.2169 | 32.7209 | 17.9205 | 106.5404 | 0.0825 | 0.1203 | | 0.1681 | 0.1 | 100 | 0.1998 | 9.9454 | 4.1038 | 108.1653 | 0.0730 | 0.0960 | | 0.1025 | 0.2 | 200 | 0.1693 | 8.6885 | 3.7458 | 109.6779 | 0.0707 | 0.0957 | | 0.2508 | 0.3 | 300 | 0.1590 | 8.3897 | 3.4931 | 110.3209 | 0.0716 | 0.0947 | | 0.1446 | 1.088 | 400 | 0.1571 | 8.2626 | 3.4939 | 110.1930 | 0.0718 | 0.0951 | | 0.1833 | 1.188 | 500 | 0.1505 | 8.0463 | 3.4298 | 110.3821 | 0.0709 | 0.0950 | | 0.1409 | 1.288 | 600 | 0.1489 | 7.9948 | 3.3401 | 110.6880 | 0.0709 | 0.0939 | | 0.1184 | 2.076 | 700 | 0.1492 | 7.9124 | 3.3181 | 110.6153 | 0.0728 | 0.0946 | | 0.1737 | 2.176 | 800 | 0.1468 | 7.8128 | 3.2583 | 110.7120 | 0.0714 | 0.0947 | | 0.1522 | 2.276 | 900 | 0.1462 | 7.7887 | 3.2604 | 110.7694 | 0.0710 | 0.0937 | | 0.1077 | 3.064 | 1000 | 0.1459 | 7.7269 | 3.2519 | 111.0004 | 0.0705 | 0.0932 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.0 - Pytorch 2.4.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0