--- library_name: transformers language: - zh license: mit base_model: openai/whisper-large-v3-turbo tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - JacobLinCool/common_voice_16_1_zh_TW_clean_preprocessed metrics: - wer model-index: - name: whisper-large-v3-turbo-zh-TW-clean-1 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: JacobLinCool/common_voice_16_1_zh_TW_clean_preprocessed type: JacobLinCool/common_voice_16_1_zh_TW_clean_preprocessed metrics: - type: wer value: 40.07234726688103 name: Wer --- # whisper-large-v3-turbo-zh-TW-clean-1 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the JacobLinCool/common_voice_16_1_zh_TW_clean_preprocessed dataset. It achieves the following results on the evaluation set: - Loss: 0.2641 - Wer: 40.0723 - Cer: 11.4336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:------:|:----:|:-------:|:---------------:|:-------:| | No log | 0 | 0 | 22.9952 | 2.8297 | 83.7420 | | 2.0577 | 0.9987 | 377 | 14.2907 | 0.2666 | 47.9904 | | 1.9482 | 2.0 | 755 | 14.4991 | 0.2770 | 47.9703 | | 1.1107 | 2.9987 | 1132 | 15.0615 | 0.2886 | 48.4124 | | 0.7225 | 4.0 | 1510 | 13.4020 | 0.2736 | 46.2420 | | 0.5901 | 4.9987 | 1887 | 13.7309 | 0.2759 | 45.2572 | | 0.4879 | 6.0 | 2265 | 12.9777 | 0.2740 | 44.9759 | | 0.1874 | 6.9987 | 2642 | 12.7316 | 0.2663 | 44.2524 | | 0.0544 | 8.0 | 3020 | 12.2295 | 0.2712 | 42.6648 | | 0.0128 | 8.9987 | 3397 | 11.6068 | 0.2669 | 40.8963 | | 0.004 | 9.9868 | 3770 | 11.4336 | 0.2641 | 40.0723 | | 0.004 | 9.9868 | 3770 | 0.2641 | 40.0723 | 11.4336 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.4.0 - Datasets 3.0.2 - Tokenizers 0.20.1