--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: txsa-sentiment-distilbert-HPO-full results: [] --- # txsa-sentiment-distilbert-HPO-full This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2792 - Accuracy: 0.963 - F1: 0.963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.734765329618898e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.8024 | 1.0 | 3211 | 0.3262 | 0.893 | 0.893 | | 0.3227 | 2.0 | 6422 | 0.2226 | 0.947 | 0.9470 | | 0.1723 | 3.0 | 9633 | 0.2092 | 0.956 | 0.956 | | 0.0996 | 4.0 | 12844 | 0.2710 | 0.96 | 0.96 | | 0.0621 | 5.0 | 16055 | 0.2792 | 0.963 | 0.963 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2