--- library_name: sklearn license: mit tags: - sklearn - skops - tabular-regression model_format: pickle model_file: example.pkl widget: - structuredData: Height: - 11.52 - 12.48 - 12.3778 Length1: - 23.2 - 24.0 - 23.9 Length2: - 25.4 - 26.3 - 26.5 Length3: - 30.0 - 31.2 - 31.1 Species: - Bream - Bream - Bream Width: - 4.02 - 4.3056 - 4.6961 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('columntransformer', ColumnTransformer(remainder='passthrough',
transformers=[('onehotencoder',
OneHotEncoder(handle_unknown='ignore',
sparse=False),
)])), ('gradientboostingregressor', GradientBoostingRegressor(random_state=42))] | | verbose | False | | columntransformer | ColumnTransformer(remainder='passthrough',
transformers=[('onehotencoder',
OneHotEncoder(handle_unknown='ignore',
sparse=False),
)]) | | gradientboostingregressor | GradientBoostingRegressor(random_state=42) | | columntransformer__n_jobs | | | columntransformer__remainder | passthrough | | columntransformer__sparse_threshold | 0.3 | | columntransformer__transformer_weights | | | columntransformer__transformers | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False), )] | | columntransformer__verbose | False | | columntransformer__verbose_feature_names_out | True | | columntransformer__onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) | | columntransformer__onehotencoder__categories | auto | | columntransformer__onehotencoder__drop | | | columntransformer__onehotencoder__dtype | | | columntransformer__onehotencoder__feature_name_combiner | concat | | columntransformer__onehotencoder__handle_unknown | ignore | | columntransformer__onehotencoder__max_categories | | | columntransformer__onehotencoder__min_frequency | | | columntransformer__onehotencoder__sparse | False | | columntransformer__onehotencoder__sparse_output | True | | gradientboostingregressor__alpha | 0.9 | | gradientboostingregressor__ccp_alpha | 0.0 | | gradientboostingregressor__criterion | friedman_mse | | gradientboostingregressor__init | | | gradientboostingregressor__learning_rate | 0.1 | | gradientboostingregressor__loss | squared_error | | gradientboostingregressor__max_depth | 3 | | gradientboostingregressor__max_features | | | gradientboostingregressor__max_leaf_nodes | | | gradientboostingregressor__min_impurity_decrease | 0.0 | | gradientboostingregressor__min_samples_leaf | 1 | | gradientboostingregressor__min_samples_split | 2 | | gradientboostingregressor__min_weight_fraction_leaf | 0.0 | | gradientboostingregressor__n_estimators | 100 | | gradientboostingregressor__n_iter_no_change | | | gradientboostingregressor__random_state | 42 | | gradientboostingregressor__subsample | 1.0 | | gradientboostingregressor__tol | 0.0001 | | gradientboostingregressor__validation_fraction | 0.1 | | gradientboostingregressor__verbose | 0 | | gradientboostingregressor__warm_start | False |
### Model Plot
Pipeline(steps=[('columntransformer',ColumnTransformer(remainder='passthrough',transformers=[('onehotencoder',OneHotEncoder(handle_unknown='ignore',sparse=False),<sklearn.compose._column_transformer.make_column_selector object at 0x7c049c39ec20>)])),('gradientboostingregressor',GradientBoostingRegressor(random_state=42))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # model_card_authors JP # limitations This model is intended for educational purposes. # model_description This is a GradientBoostingRegressor on a fish dataset.