--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy base_model: bert-base-uncased model-index: - name: bert-base-uncased-wnli results: - task: type: text-classification name: Text Classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - type: accuracy value: 0.5633802816901409 name: Accuracy --- # bert-base-uncased-wnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6959 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 0.6933 | 0.5493 | | No log | 2.0 | 40 | 0.6959 | 0.5634 | | No log | 3.0 | 60 | 0.6978 | 0.5352 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1