--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: roberta-base-finetuned-mrpc results: [] --- # roberta-base-finetuned-mrpc This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3411 - Accuracy: 0.865 - F1: 0.9046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4522 | 1.0 | 57 | 0.4265 | 0.8075 | 0.8666 | | 0.2951 | 2.0 | 114 | 0.3313 | 0.8625 | 0.9009 | | 0.3248 | 3.0 | 171 | 0.3604 | 0.855 | 0.9000 | | 0.1417 | 4.0 | 228 | 0.3411 | 0.865 | 0.9046 | | 0.1147 | 5.0 | 285 | 0.3359 | 0.865 | 0.9018 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.3.2 - Tokenizers 0.12.1