--- library_name: peft license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct tags: - generated_from_trainer model-index: - name: Math-SmolLM2-1.7B results: [] --- # Math-SmolLM2-1.7B This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0174 | 0.2 | 100 | 0.0146 | | 0.0122 | 0.4 | 200 | 0.0117 | | 0.0108 | 0.6 | 300 | 0.0106 | | 0.0101 | 0.8 | 400 | 0.0103 | | 0.0101 | 1.0 | 500 | 0.0102 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3