--- library_name: peft base_model: ericzzz/falcon-rw-1b-instruct-openorca license: apache-2.0 language: - en --- ## Model Description Quick and dirty hack for binary movie sentiment analysis. Finetuned with LoRA (PEFT) on [ericzzz/falcon-rw-1b-instruct-openorca](https://huggingface.co/datasets/open-llm-leaderboard/details_ericzzz__falcon-rw-1b-instruct-openorca). Trained on a subset of [IMDB Dataset of 50K Movie Reviews](https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews) from Kaggle: **To load the model you can use this code:** PEFT_MODEL = "Jonny00/falcon-1b-movie-sentiment-analysis" config = PeftConfig.from_pretrained(PEFT_MODEL) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, device_map="auto", trust_remote_code=True) tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path) tokenizer.pad_token = tokenizer.eos_token model = PeftModel.from_pretrained(model, PEFT_MODEL) **Input**: *("\: This movie sucks, I'd rather stay at home! \:")* **Output**: *("... negative \: negative \: negative ...")* ## Example Google Colab Code https://colab.research.google.com/drive/1LUILztSocpqpMz8xACbtmxl-W-cORXRZ?usp=sharing ## Framework versions - PEFT 0.7.1