--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy - precision - recall - f1 widget: - text: A Black man, Floyd died in police custody May 25 after a Minneapolis cop kneeled on his neck for more than eight minutes. - text: 'Now Modi has made international headlines for yet another similarity: He’s constructing a massive wall … but unlike Trump’s goal of keeping immigrants out, Modi’s wall was built to hide the country’s poverty from the gold-plated American president.' - text: Billionaire Democrat presidential hopeful Mike Bloomberg is a staunch proponent of gun control for America with one caveat–he gets to spend his days surrounded by good guys with guns to keep him safe. - text: The number of women behind the camera on Hollywood movies jumped to record levels in 2019, with 12 directing top-grossing films including “Frozen II,” “Captain Marvel” and “Hustlers,” two studies showed on Thursday. - text: The hearing comes a day after the Democrat-led House held a hearing to discuss the alleged threat of white nationalist terrorism to the country. pipeline_tag: text-classification inference: true base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7010135135135135 name: Accuracy - type: precision value: 0.7024038067625294 name: Precision - type: recall value: 0.7010135135135135 name: Recall - type: f1 value: 0.7015820127453647 name: F1 --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | left | | | right | | | center | | ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.7010 | 0.7024 | 0.7010 | 0.7016 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("JordanTallon/Unifeed") # Run inference preds = model("A Black man, Floyd died in police custody May 25 after a Minneapolis cop kneeled on his neck for more than eight minutes.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 9 | 32.9560 | 90 | | Label | Training Sample Count | |:-------|:----------------------| | center | 777 | | left | 780 | | right | 808 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (200, 200) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 1 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - seed: 326 - run_name: unifeed_bias_training - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:--------:|:--------:|:-------------:|:---------------:| | 0.0002 | 1 | 0.2486 | - | | 1.0 | 4878 | 0.0092 | 0.308 | | 2.0 | 9756 | 0.0004 | 0.3228 | | 3.0 | 14634 | 0.0002 | 0.3326 | | 4.0 | 19512 | 0.0002 | 0.3191 | | 5.0 | 24390 | 0.0001 | 0.3279 | | 6.0 | 29268 | 0.0001 | 0.3384 | | 7.0 | 34146 | 0.0001 | 0.3311 | | 8.0 | 39024 | 0.0001 | 0.3316 | | 0.0068 | 1 | 0.0007 | - | | 1.0 | 148 | 0.0006 | 0.3042 | | 2.0 | 296 | 0.0006 | 0.3352 | | 3.0 | 444 | 0.0382 | 0.3059 | | 4.0 | 592 | 0.0022 | 0.3055 | | 5.0 | 740 | 0.0044 | 0.3034 | | 6.0 | 888 | 0.0006 | 0.3185 | | 7.0 | 1036 | 0.0005 | 0.3066 | | 8.0 | 1184 | 0.0008 | 0.3196 | | 9.0 | 1332 | 0.0004 | 0.326 | | 10.0 | 1480 | 0.0004 | 0.352 | | 11.0 | 1628 | 0.0005 | 0.3122 | | 12.0 | 1776 | 0.0003 | 0.3268 | | 13.0 | 1924 | 0.0004 | 0.2928 | | 14.0 | 2072 | 0.0004 | 0.3148 | | 15.0 | 2220 | 0.0003 | 0.3153 | | 16.0 | 2368 | 0.0004 | 0.3385 | | 17.0 | 2516 | 0.0004 | 0.3107 | | 18.0 | 2664 | 0.0004 | 0.3225 | | 19.0 | 2812 | 0.0003 | 0.3073 | | 20.0 | 2960 | 0.0003 | 0.316 | | 21.0 | 3108 | 0.0003 | 0.3053 | | 22.0 | 3256 | 0.0004 | 0.3227 | | 23.0 | 3404 | 0.0004 | 0.3099 | | 24.0 | 3552 | 0.0003 | 0.3043 | | 25.0 | 3700 | 0.0003 | 0.3316 | | 0.0034 | 1 | 0.0004 | - | | 1.0 | 296 | 0.0003 | 0.3321 | | 2.0 | 592 | 0.0016 | 0.3202 | | 3.0 | 888 | 0.0005 | 0.3376 | | 4.0 | 1184 | 0.0004 | 0.3167 | | 5.0 | 1480 | 0.0003 | 0.3342 | | 6.0 | 1776 | 0.0003 | 0.3183 | | 7.0 | 2072 | 0.0003 | 0.3086 | | 8.0 | 2368 | 0.0003 | 0.312 | | 9.0 | 2664 | 0.0003 | 0.3169 | | 10.0 | 2960 | 0.0003 | 0.3317 | | 11.0 | 3256 | 0.0004 | 0.3126 | | 12.0 | 3552 | 0.0003 | 0.3003 | | 13.0 | 3848 | 0.0003 | 0.3119 | | 14.0 | 4144 | 0.0003 | 0.316 | | 15.0 | 4440 | 0.0002 | 0.3183 | | 16.0 | 4736 | 0.0003 | 0.313 | | 17.0 | 5032 | 0.0003 | 0.3187 | | 18.0 | 5328 | 0.0002 | 0.3295 | | 19.0 | 5624 | 0.0002 | 0.3487 | | 20.0 | 5920 | 0.0003 | 0.3458 | | 21.0 | 6216 | 0.0002 | 0.331 | | 22.0 | 6512 | 0.0002 | 0.3499 | | 23.0 | 6808 | 0.0003 | 0.3296 | | 24.0 | 7104 | 0.0003 | 0.3097 | | 25.0 | 7400 | 0.0003 | 0.3197 | | 0.0068 | 1 | 0.0003 | - | | 1.0 | 148 | 0.0003 | 0.3219 | | 2.0 | 296 | 0.0003 | 0.3185 | | 3.0 | 444 | 0.0003 | 0.3114 | | 4.0 | 592 | 0.0003 | 0.2989 | | 5.0 | 740 | 0.0003 | 0.335 | | 6.0 | 888 | 0.0004 | 0.3132 | | 7.0 | 1036 | 0.0003 | 0.3264 | | 8.0 | 1184 | 0.0004 | 0.3461 | | 9.0 | 1332 | 0.0002 | 0.3185 | | 10.0 | 1480 | 0.0002 | 0.3336 | | 11.0 | 1628 | 0.0003 | 0.3282 | | 12.0 | 1776 | 0.0003 | 0.3206 | | 13.0 | 1924 | 0.0002 | 0.3303 | | 14.0 | 2072 | 0.0002 | 0.3362 | | 15.0 | 2220 | 0.0002 | 0.3382 | | 16.0 | 2368 | 0.0002 | 0.3241 | | 17.0 | 2516 | 0.0002 | 0.3303 | | 18.0 | 2664 | 0.0002 | 0.3301 | | 19.0 | 2812 | 0.0002 | 0.319 | | 20.0 | 2960 | 0.0002 | 0.3304 | | 21.0 | 3108 | 0.0002 | 0.3379 | | 22.0 | 3256 | 0.0002 | 0.3424 | | 23.0 | 3404 | 0.0002 | 0.3273 | | 24.0 | 3552 | 0.0002 | 0.3213 | | 25.0 | 3700 | 0.0002 | 0.3191 | | 0.0068 | 1 | 0.0003 | - | | 1.0 | 148 | 0.0003 | 0.3245 | | 2.0 | 296 | 0.0002 | 0.3148 | | 3.0 | 444 | 0.0002 | 0.3174 | | 4.0 | 592 | 0.0003 | 0.3242 | | 5.0 | 740 | 0.0003 | 0.3352 | | 6.0 | 888 | 0.0003 | 0.3112 | | 7.0 | 1036 | 0.0003 | 0.3204 | | 8.0 | 1184 | 0.0003 | 0.3734 | | 9.0 | 1332 | 0.0002 | 0.3383 | | 10.0 | 1480 | 0.0003 | 0.3272 | | 11.0 | 1628 | 0.0002 | 0.3106 | | 12.0 | 1776 | 0.0003 | 0.3307 | | 13.0 | 1924 | 0.0003 | 0.3359 | | 14.0 | 2072 | 0.0002 | 0.3264 | | 15.0 | 2220 | 0.0002 | 0.3254 | | 16.0 | 2368 | 0.0002 | 0.3349 | | 17.0 | 2516 | 0.0132 | 0.3399 | | 18.0 | 2664 | 0.0002 | 0.343 | | 19.0 | 2812 | 0.0002 | 0.3306 | | 20.0 | 2960 | 0.0002 | 0.3472 | | 21.0 | 3108 | 0.0002 | 0.3234 | | 22.0 | 3256 | 0.002 | 0.3281 | | 23.0 | 3404 | 0.0002 | 0.3289 | | 24.0 | 3552 | 0.0002 | 0.2974 | | 25.0 | 3700 | 0.0002 | 0.3153 | | 26.0 | 3848 | 0.0002 | 0.3273 | | 27.0 | 3996 | 0.0002 | 0.313 | | 28.0 | 4144 | 0.0002 | 0.3303 | | 29.0 | 4292 | 0.0002 | 0.3106 | | 30.0 | 4440 | 0.0002 | 0.3155 | | 31.0 | 4588 | 0.0002 | 0.3553 | | 32.0 | 4736 | 0.0002 | 0.3039 | | 33.0 | 4884 | 0.0001 | 0.3133 | | 34.0 | 5032 | 0.0002 | 0.3323 | | 35.0 | 5180 | 0.0002 | 0.3264 | | 36.0 | 5328 | 0.0002 | 0.3133 | | 37.0 | 5476 | 0.0002 | 0.3308 | | 38.0 | 5624 | 0.0002 | 0.3137 | | 39.0 | 5772 | 0.0002 | 0.3062 | | 40.0 | 5920 | 0.0002 | 0.3438 | | 41.0 | 6068 | 0.0002 | 0.3426 | | 42.0 | 6216 | 0.0002 | 0.326 | | 43.0 | 6364 | 0.0002 | 0.322 | | 44.0 | 6512 | 0.0002 | 0.3202 | | 45.0 | 6660 | 0.0002 | 0.3253 | | 46.0 | 6808 | 0.0002 | 0.3272 | | 47.0 | 6956 | 0.0002 | 0.3258 | | 48.0 | 7104 | 0.0002 | 0.3252 | | 49.0 | 7252 | 0.0002 | 0.3233 | | 50.0 | 7400 | 0.0002 | 0.3234 | | 0.0135 | 1 | 0.0002 | - | | 1.0 | 74 | 0.0002 | - | | 0.0068 | 1 | 0.0002 | - | | 1.0 | 148 | 0.0002 | 0.3036 | | 2.0 | 296 | 0.0002 | 0.3555 | | 3.0 | 444 | 0.0002 | 0.3331 | | 4.0 | 592 | 0.0002 | 0.3086 | | 5.0 | 740 | 0.0002 | 0.3036 | | 6.0 | 888 | 0.0002 | 0.3217 | | 7.0 | 1036 | 0.0002 | 0.3416 | | 8.0 | 1184 | 0.0002 | 0.3309 | | 9.0 | 1332 | 0.0002 | 0.3424 | | 10.0 | 1480 | 0.0003 | 0.3655 | | 11.0 | 1628 | 0.0002 | 0.3042 | | 12.0 | 1776 | 0.0019 | 0.326 | | 13.0 | 1924 | 0.0002 | 0.3161 | | 14.0 | 2072 | 0.0002 | 0.3286 | | 15.0 | 2220 | 0.0002 | 0.3563 | | 16.0 | 2368 | 0.0002 | 0.326 | | 17.0 | 2516 | 0.0002 | 0.3114 | | 18.0 | 2664 | 0.0002 | 0.3366 | | 19.0 | 2812 | 0.0002 | 0.329 | | 20.0 | 2960 | 0.0002 | 0.3217 | | 21.0 | 3108 | 0.0002 | 0.325 | | 22.0 | 3256 | 0.0002 | 0.3243 | | 23.0 | 3404 | 0.0002 | 0.3341 | | 24.0 | 3552 | 0.0002 | 0.3237 | | 25.0 | 3700 | 0.0002 | 0.3433 | | 26.0 | 3848 | 0.0002 | 0.3196 | | 27.0 | 3996 | 0.0001 | 0.3372 | | 28.0 | 4144 | 0.0001 | 0.3191 | | 29.0 | 4292 | 0.0001 | 0.328 | | 30.0 | 4440 | 0.0002 | 0.3416 | | 31.0 | 4588 | 0.0002 | 0.3132 | | 32.0 | 4736 | 0.0002 | 0.3429 | | 33.0 | 4884 | 0.0002 | 0.336 | | 34.0 | 5032 | 0.0002 | 0.3507 | | 35.0 | 5180 | 0.0001 | 0.3483 | | 36.0 | 5328 | 0.0002 | 0.3325 | | 37.0 | 5476 | 0.0001 | 0.3406 | | 38.0 | 5624 | 0.0003 | 0.3538 | | 39.0 | 5772 | 0.0002 | 0.3422 | | 40.0 | 5920 | 0.0002 | 0.3359 | | 41.0 | 6068 | 0.0002 | 0.3252 | | 42.0 | 6216 | 0.0002 | 0.326 | | 43.0 | 6364 | 0.0002 | 0.3613 | | 44.0 | 6512 | 0.0001 | 0.332 | | 45.0 | 6660 | 0.0002 | 0.3295 | | 46.0 | 6808 | 0.0002 | 0.3265 | | 47.0 | 6956 | 0.0002 | 0.2982 | | 48.0 | 7104 | 0.0002 | 0.3017 | | 49.0 | 7252 | 0.0001 | 0.309 | | 50.0 | 7400 | 0.0001 | 0.3199 | | 51.0 | 7548 | 0.0001 | 0.325 | | 52.0 | 7696 | 0.0002 | 0.3222 | | 53.0 | 7844 | 0.0001 | 0.3189 | | 54.0 | 7992 | 0.0001 | 0.3329 | | 55.0 | 8140 | 0.0001 | 0.3272 | | 56.0 | 8288 | 0.0001 | 0.3292 | | 57.0 | 8436 | 0.0001 | 0.3283 | | 58.0 | 8584 | 0.0001 | 0.3301 | | 59.0 | 8732 | 0.0001 | 0.3334 | | 60.0 | 8880 | 0.0001 | 0.3144 | | 61.0 | 9028 | 0.0002 | 0.3487 | | 62.0 | 9176 | 0.0002 | 0.3602 | | **63.0** | **9324** | **0.0001** | **0.3056** | | 64.0 | 9472 | 0.0001 | 0.3415 | | 65.0 | 9620 | 0.0002 | 0.3299 | | 66.0 | 9768 | 0.0001 | 0.3254 | | 67.0 | 9916 | 0.0001 | 0.3396 | | 68.0 | 10064 | 0.0001 | 0.3501 | | 69.0 | 10212 | 0.0001 | 0.3275 | | 70.0 | 10360 | 0.0001 | 0.34 | | 71.0 | 10508 | 0.0001 | 0.3351 | | 72.0 | 10656 | 0.0001 | 0.3367 | | 73.0 | 10804 | 0.0001 | 0.3548 | | 74.0 | 10952 | 0.0001 | 0.33 | | 75.0 | 11100 | 0.0001 | 0.3259 | | 76.0 | 11248 | 0.0002 | 0.3283 | | 77.0 | 11396 | 0.0001 | 0.3214 | | 78.0 | 11544 | 0.0001 | 0.324 | | 79.0 | 11692 | 0.0001 | 0.3247 | | 80.0 | 11840 | 0.0001 | 0.3347 | | 81.0 | 11988 | 0.0001 | 0.3292 | | 82.0 | 12136 | 0.0002 | 0.3568 | | 83.0 | 12284 | 0.0001 | 0.324 | | 84.0 | 12432 | 0.0001 | 0.3245 | | 85.0 | 12580 | 0.0001 | 0.3368 | | 86.0 | 12728 | 0.0001 | 0.3372 | | 87.0 | 12876 | 0.0001 | 0.3432 | | 88.0 | 13024 | 0.0001 | 0.3048 | | 89.0 | 13172 | 0.0001 | 0.3395 | | 90.0 | 13320 | 0.0001 | 0.3204 | | 91.0 | 13468 | 0.0001 | 0.3122 | | 92.0 | 13616 | 0.0001 | 0.3372 | | 93.0 | 13764 | 0.0001 | 0.3306 | | 94.0 | 13912 | 0.0001 | 0.3362 | | 95.0 | 14060 | 0.0001 | 0.3386 | | 96.0 | 14208 | 0.0001 | 0.3198 | | 97.0 | 14356 | 0.0001 | 0.3176 | | 98.0 | 14504 | 0.0001 | 0.3604 | | 99.0 | 14652 | 0.0001 | 0.3507 | | 100.0 | 14800 | 0.0001 | 0.3272 | | 0.0023 | 1 | 0.0001 | - | | 1.0 | 444 | 0.0002 | 0.3295 | | 2.0 | 888 | 0.0001 | 0.3144 | | 3.0 | 1332 | 0.0001 | 0.3213 | | 4.0 | 1776 | 0.0001 | 0.3362 | | 5.0 | 2220 | 0.0001 | 0.3398 | | 6.0 | 2664 | 0.0001 | 0.3385 | | 7.0 | 3108 | 0.0002 | 0.3406 | | 8.0 | 3552 | 0.0001 | 0.3253 | | 9.0 | 3996 | 0.0001 | 0.3253 | | 10.0 | 4440 | 0.0001 | 0.3119 | | 11.0 | 4884 | 0.0001 | 0.3204 | | 12.0 | 5328 | 0.0001 | 0.3387 | | 13.0 | 5772 | 0.0001 | 0.3387 | | 14.0 | 6216 | 0.0001 | 0.3584 | | 15.0 | 6660 | 0.0001 | 0.3548 | | 16.0 | 7104 | 0.0001 | 0.3314 | | 17.0 | 7548 | 0.0001 | 0.3335 | | 18.0 | 7992 | 0.0001 | 0.3325 | | 19.0 | 8436 | 0.0001 | 0.3545 | | 20.0 | 8880 | 0.0001 | 0.3456 | | **21.0** | **9324** | **0.0001** | **0.3532** | | 22.0 | 9768 | 0.0001 | 0.3524 | | 23.0 | 10212 | 0.0001 | 0.352 | | 24.0 | 10656 | 0.0001 | 0.3502 | | 25.0 | 11100 | 0.0 | 0.3275 | | 0.0034 | 1 | 0.0001 | - | | 1.0 | 296 | 0.0001 | 0.3209 | | 2.0 | 592 | 0.0001 | 0.3265 | | 3.0 | 888 | 0.0001 | 0.3414 | | 4.0 | 1184 | 0.0001 | 0.3314 | | 5.0 | 1480 | 0.0002 | 0.3498 | | 6.0 | 1776 | 0.0001 | 0.337 | | 7.0 | 2072 | 0.0001 | 0.3347 | | 8.0 | 2368 | 0.0001 | 0.3494 | | 9.0 | 2664 | 0.0001 | 0.3326 | | 10.0 | 2960 | 0.0001 | 0.3259 | | 11.0 | 3256 | 0.0002 | 0.3443 | | 12.0 | 3552 | 0.0001 | 0.3431 | | 13.0 | 3848 | 0.0001 | 0.324 | | 14.0 | 4144 | 0.0001 | 0.3339 | | 15.0 | 4440 | 0.0001 | 0.3255 | | 16.0 | 4736 | 0.0001 | 0.3379 | | 17.0 | 5032 | 0.0001 | 0.3285 | | 18.0 | 5328 | 0.0001 | 0.3362 | | 19.0 | 5624 | 0.0001 | 0.3319 | | 20.0 | 5920 | 0.0001 | 0.3456 | | 21.0 | 6216 | 0.0001 | 0.329 | | 22.0 | 6512 | 0.0001 | 0.3386 | | 23.0 | 6808 | 0.0001 | 0.3278 | | 24.0 | 7104 | 0.0001 | 0.3078 | | 25.0 | 7400 | 0.0001 | 0.3155 | | 0.0068 | 1 | 0.0001 | - | | 1.0 | 148 | 0.0001 | 0.3225 | | 2.0 | 296 | 0.0001 | 0.3526 | | 3.0 | 444 | 0.0001 | 0.3265 | | 4.0 | 592 | 0.0001 | 0.3206 | | 5.0 | 740 | 0.0001 | 0.3126 | | 6.0 | 888 | 0.0001 | 0.3306 | | 7.0 | 1036 | 0.0001 | 0.3189 | | 8.0 | 1184 | 0.0001 | 0.3246 | | 9.0 | 1332 | 0.0001 | 0.3346 | | 10.0 | 1480 | 0.0001 | 0.3528 | | 11.0 | 1628 | 0.0001 | 0.3204 | | 12.0 | 1776 | 0.0001 | 0.34 | | 13.0 | 1924 | 0.0001 | 0.3291 | | 14.0 | 2072 | 0.0001 | 0.3444 | | 15.0 | 2220 | 0.0001 | 0.339 | | 16.0 | 2368 | 0.0001 | 0.3533 | | 17.0 | 2516 | 0.0001 | 0.3288 | | 18.0 | 2664 | 0.0001 | 0.3475 | | 19.0 | 2812 | 0.0001 | 0.3464 | | 20.0 | 2960 | 0.0001 | 0.3351 | | 21.0 | 3108 | 0.0001 | 0.3421 | | 22.0 | 3256 | 0.0001 | 0.3351 | | 23.0 | 3404 | 0.0001 | 0.3416 | | 24.0 | 3552 | 0.0001 | 0.3414 | | 25.0 | 3700 | 0.0001 | 0.3433 | | 26.0 | 3848 | 0.0001 | 0.3339 | | 27.0 | 3996 | 0.0001 | 0.35 | | 28.0 | 4144 | 0.0001 | 0.3215 | | 29.0 | 4292 | 0.0001 | 0.3278 | | 30.0 | 4440 | 0.0001 | 0.3508 | | 31.0 | 4588 | 0.0001 | 0.3356 | | 32.0 | 4736 | 0.0001 | 0.3617 | | 33.0 | 4884 | 0.0001 | 0.3368 | | 34.0 | 5032 | 0.0001 | 0.3551 | | 35.0 | 5180 | 0.0001 | 0.3582 | | 36.0 | 5328 | 0.0001 | 0.333 | | 37.0 | 5476 | 0.0 | 0.3461 | | 38.0 | 5624 | 0.0001 | 0.3515 | | 39.0 | 5772 | 0.0001 | 0.3601 | | 40.0 | 5920 | 0.0001 | 0.347 | | 41.0 | 6068 | 0.0001 | 0.3444 | | 42.0 | 6216 | 0.0 | 0.3609 | | 43.0 | 6364 | 0.0 | 0.3432 | | 44.0 | 6512 | 0.0 | 0.3526 | | 45.0 | 6660 | 0.0 | 0.3382 | | 46.0 | 6808 | 0.0 | 0.353 | | 47.0 | 6956 | 0.0001 | 0.3374 | | 48.0 | 7104 | 0.0001 | 0.327 | | 49.0 | 7252 | 0.0001 | 0.3202 | | 50.0 | 7400 | 0.0 | 0.3386 | | 51.0 | 7548 | 0.0001 | 0.3501 | | 52.0 | 7696 | 0.0002 | 0.3341 | | 53.0 | 7844 | 0.0001 | 0.3024 | | 54.0 | 7992 | 0.0001 | 0.3456 | | 55.0 | 8140 | 0.0 | 0.3323 | | 56.0 | 8288 | 0.0 | 0.3259 | | 57.0 | 8436 | 0.0 | 0.3246 | | 58.0 | 8584 | 0.0 | 0.3341 | | 59.0 | 8732 | 0.0 | 0.3347 | | 60.0 | 8880 | 0.0 | 0.322 | | 61.0 | 9028 | 0.0001 | 0.3323 | | 62.0 | 9176 | 0.0 | 0.3471 | | **63.0** | **9324** | **0.0001** | **0.2913** | | 64.0 | 9472 | 0.0 | 0.3144 | | 65.0 | 9620 | 0.0001 | 0.3184 | | 66.0 | 9768 | 0.0 | 0.3251 | | 67.0 | 9916 | 0.0001 | 0.3342 | | 68.0 | 10064 | 0.0 | 0.3486 | | 69.0 | 10212 | 0.0 | 0.3381 | | 70.0 | 10360 | 0.0 | 0.3161 | | 71.0 | 10508 | 0.0 | 0.3036 | | 72.0 | 10656 | 0.0 | 0.3141 | | 73.0 | 10804 | 0.0 | 0.3307 | | 74.0 | 10952 | 0.0 | 0.3153 | | 75.0 | 11100 | 0.0 | 0.3016 | | 76.0 | 11248 | 0.0001 | 0.3321 | | 77.0 | 11396 | 0.0001 | 0.3194 | | 78.0 | 11544 | 0.0001 | 0.3496 | | 79.0 | 11692 | 0.0 | 0.3218 | | 80.0 | 11840 | 0.0 | 0.3251 | | 81.0 | 11988 | 0.0 | 0.3468 | | 82.0 | 12136 | 0.0 | 0.3803 | | 83.0 | 12284 | 0.0 | 0.3354 | | 84.0 | 12432 | 0.0 | 0.351 | | 85.0 | 12580 | 0.0 | 0.3231 | | 86.0 | 12728 | 0.0 | 0.3027 | | 87.0 | 12876 | 0.0 | 0.3309 | | 88.0 | 13024 | 0.0 | 0.3194 | | 89.0 | 13172 | 0.0 | 0.3611 | | 90.0 | 13320 | 0.0 | 0.3288 | | 91.0 | 13468 | 0.0 | 0.3261 | | 92.0 | 13616 | 0.0 | 0.3268 | | 93.0 | 13764 | 0.0 | 0.3433 | | 94.0 | 13912 | 0.0 | 0.3438 | | 95.0 | 14060 | 0.0 | 0.3288 | | 96.0 | 14208 | 0.0 | 0.3263 | | 97.0 | 14356 | 0.0 | 0.3331 | | 98.0 | 14504 | 0.0 | 0.3334 | | 99.0 | 14652 | 0.0 | 0.319 | | 100.0 | 14800 | 0.0 | 0.3033 | | 101.0 | 14948 | 0.0001 | 0.3051 | | 102.0 | 15096 | 0.0 | 0.3321 | | 103.0 | 15244 | 0.0 | 0.3181 | | 104.0 | 15392 | 0.0 | 0.2943 | | 105.0 | 15540 | 0.0 | 0.3137 | | 106.0 | 15688 | 0.0 | 0.3111 | | 107.0 | 15836 | 0.0 | 0.2968 | | 108.0 | 15984 | 0.0 | 0.3072 | | 109.0 | 16132 | 0.0 | 0.3154 | | 110.0 | 16280 | 0.0001 | 0.3211 | | 111.0 | 16428 | 0.0 | 0.2974 | | 112.0 | 16576 | 0.0 | 0.3057 | | 113.0 | 16724 | 0.0 | 0.296 | | 114.0 | 16872 | 0.0 | 0.3104 | | 115.0 | 17020 | 0.0 | 0.3029 | | 116.0 | 17168 | 0.0 | 0.329 | | 117.0 | 17316 | 0.0 | 0.3275 | | 118.0 | 17464 | 0.0 | 0.3343 | | 119.0 | 17612 | 0.0 | 0.3168 | | 120.0 | 17760 | 0.0 | 0.3208 | | 121.0 | 17908 | 0.0 | 0.2973 | | 122.0 | 18056 | 0.0 | 0.3121 | | 123.0 | 18204 | 0.0 | 0.3049 | | 124.0 | 18352 | 0.0 | 0.3079 | | 125.0 | 18500 | 0.0 | 0.2994 | | 126.0 | 18648 | 0.0 | 0.3189 | | 127.0 | 18796 | 0.0 | 0.3255 | | 128.0 | 18944 | 0.0 | 0.3111 | | 129.0 | 19092 | 0.0 | 0.3182 | | 130.0 | 19240 | 0.0 | 0.356 | | 131.0 | 19388 | 0.0 | 0.3299 | | 132.0 | 19536 | 0.0 | 0.3308 | | 133.0 | 19684 | 0.0 | 0.3379 | | 134.0 | 19832 | 0.0 | 0.3233 | | 135.0 | 19980 | 0.0 | 0.327 | | 136.0 | 20128 | 0.0 | 0.318 | | 137.0 | 20276 | 0.0 | 0.2937 | | 138.0 | 20424 | 0.0 | 0.3039 | | 139.0 | 20572 | 0.0 | 0.3367 | | 140.0 | 20720 | 0.0 | 0.3185 | | 141.0 | 20868 | 0.0 | 0.3441 | | 142.0 | 21016 | 0.0 | 0.3055 | | 143.0 | 21164 | 0.0 | 0.3202 | | 144.0 | 21312 | 0.0 | 0.3144 | | 145.0 | 21460 | 0.0 | 0.3304 | | 146.0 | 21608 | 0.0 | 0.3165 | | 147.0 | 21756 | 0.0 | 0.309 | | 148.0 | 21904 | 0.0 | 0.3086 | | 149.0 | 22052 | 0.0 | 0.2987 | | 150.0 | 22200 | 0.0 | 0.3198 | | 151.0 | 22348 | 0.0 | 0.3372 | | 152.0 | 22496 | 0.0 | 0.3156 | | 153.0 | 22644 | 0.0 | 0.3206 | | 154.0 | 22792 | 0.0 | 0.322 | | 155.0 | 22940 | 0.0 | 0.3445 | | 156.0 | 23088 | 0.0 | 0.3183 | | 157.0 | 23236 | 0.0 | 0.3203 | | 158.0 | 23384 | 0.0 | 0.3337 | | 159.0 | 23532 | 0.0 | 0.3245 | | 160.0 | 23680 | 0.0 | 0.3068 | | 161.0 | 23828 | 0.0 | 0.3199 | | 162.0 | 23976 | 0.0 | 0.3308 | | 163.0 | 24124 | 0.0 | 0.3446 | | 164.0 | 24272 | 0.0 | 0.341 | | 165.0 | 24420 | 0.0 | 0.3155 | | 166.0 | 24568 | 0.0 | 0.3306 | | 167.0 | 24716 | 0.0 | 0.3422 | | 168.0 | 24864 | 0.0 | 0.336 | | 169.0 | 25012 | 0.0 | 0.3271 | | 170.0 | 25160 | 0.0 | 0.3062 | | 171.0 | 25308 | 0.0 | 0.305 | | 172.0 | 25456 | 0.0 | 0.3047 | | 173.0 | 25604 | 0.0 | 0.3281 | | 174.0 | 25752 | 0.0 | 0.3059 | | 175.0 | 25900 | 0.0 | 0.2993 | | 176.0 | 26048 | 0.0 | 0.3206 | | 177.0 | 26196 | 0.0 | 0.3274 | | 178.0 | 26344 | 0.0 | 0.3249 | | 179.0 | 26492 | 0.0 | 0.3049 | | 180.0 | 26640 | 0.0 | 0.3131 | | 181.0 | 26788 | 0.0 | 0.3119 | | 182.0 | 26936 | 0.0 | 0.3457 | | 183.0 | 27084 | 0.0 | 0.3242 | | 184.0 | 27232 | 0.0 | 0.3006 | | 185.0 | 27380 | 0.0 | 0.3054 | | 186.0 | 27528 | 0.0 | 0.3135 | | 187.0 | 27676 | 0.0 | 0.3102 | | 188.0 | 27824 | 0.0 | 0.3394 | | 189.0 | 27972 | 0.0 | 0.3256 | | 190.0 | 28120 | 0.0 | 0.2973 | | 191.0 | 28268 | 0.0 | 0.3124 | | 192.0 | 28416 | 0.0 | 0.321 | | 193.0 | 28564 | 0.0 | 0.3332 | | 194.0 | 28712 | 0.0 | 0.3136 | | 195.0 | 28860 | 0.0 | 0.32 | | 196.0 | 29008 | 0.0 | 0.3486 | | 197.0 | 29156 | 0.0 | 0.3259 | | 198.0 | 29304 | 0.0 | 0.3134 | | 199.0 | 29452 | 0.0 | 0.3437 | | 200.0 | 29600 | 0.0 | 0.3029 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.37.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.17.1 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```