--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8818 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 17 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5851 | 1.0 | 113 | 1.7243 | 0.5 | | 1.2937 | 2.0 | 226 | 1.2310 | 0.68 | | 0.9718 | 3.0 | 339 | 0.8918 | 0.76 | | 0.6613 | 4.0 | 452 | 0.6837 | 0.81 | | 0.3693 | 5.0 | 565 | 0.6250 | 0.82 | | 0.2991 | 6.0 | 678 | 0.5740 | 0.82 | | 0.1381 | 7.0 | 791 | 0.5874 | 0.83 | | 0.2047 | 8.0 | 904 | 0.5824 | 0.86 | | 0.1192 | 9.0 | 1017 | 0.7106 | 0.83 | | 0.0652 | 10.0 | 1130 | 0.6576 | 0.87 | | 0.0105 | 11.0 | 1243 | 0.8236 | 0.84 | | 0.0074 | 12.0 | 1356 | 0.7874 | 0.85 | | 0.0064 | 13.0 | 1469 | 0.9066 | 0.84 | | 0.0041 | 14.0 | 1582 | 0.8426 | 0.85 | | 0.0038 | 15.0 | 1695 | 0.8676 | 0.84 | | 0.0039 | 16.0 | 1808 | 0.8820 | 0.85 | | 0.0036 | 17.0 | 1921 | 0.8818 | 0.85 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3