--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - common_voice_17_0 model-index: - name: SpeechT5-Hausa-2 results: [] --- # SpeechT5-Hausa-2 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.5658 | 7.3733 | 200 | 0.5169 | | 0.5266 | 14.7465 | 400 | 0.5300 | | 0.4989 | 22.1198 | 600 | 0.4869 | | 0.4747 | 29.4931 | 800 | 0.4763 | | 0.4571 | 36.8664 | 1000 | 0.4736 | | 0.4515 | 44.2396 | 1200 | 0.4751 | | 0.4385 | 51.6129 | 1400 | 0.4884 | | 0.4333 | 58.9862 | 1600 | 0.4969 | | 0.429 | 66.3594 | 1800 | 0.5048 | | 0.4198 | 73.7327 | 2000 | 0.5086 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1