--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - Jungwonchang/spgispeech_xs base_model: openai/whisper-medium.en model-index: - name: openai/whisper-medium.en, all the parameters updated for 5 epochs results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Test set for spgispeech type: kensho/spgispeech config: test split: test metrics: - type: wer value: 6.67 name: WER - type: cer value: 1.98 name: CER --- # openai/whisper-medium.en, all the parameters updated for 5 epochs This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the 2 hour dataset of SPGIspeech(custom dataset) dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 120 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.15.0