--- license: mit base_model: microsoft/deberta-v3-large tags: - trl - reward-trainer - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large-reward-model results: [] --- # deberta-v3-large-reward-model This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0084 - Accuracy: 0.9975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0336 | 2.0 | 100 | 0.0315 | 0.9975 | | 0.0043 | 4.0 | 200 | 0.0105 | 0.9925 | | 0.0006 | 6.0 | 300 | 0.0079 | 0.9975 | | 0.0001 | 8.0 | 400 | 0.0086 | 0.9975 | | 0.0002 | 10.0 | 500 | 0.0084 | 0.9975 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1