---
license: apache-2.0
language: en
datasets:
- Jzuluaga/atcosim_corpus
tags:
- audio
- automatic-speech-recognition
- en-atc
- en
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-960h-lv60-self-en-atc-atcosim
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: Jzuluaga/atcosim_corpus
name: ATCOSIM dataset (Air Traffic Control Communications)
config: test
split: test
metrics:
- type: wer
value: 1.67
name: TEST WER
verified: False
---
# wav2vec2-large-960h-lv60-self-en-atc-atcosim
This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the [ATCOSIM corpus](https://huggingface.co/datasets/Jzuluaga/atcosim_corpus).
It achieves the following results on the evaluation set:
- Loss: 0.0850
- Wer: 0.0167 (1.67% WER)
Paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822).
Authors: Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmatulina, Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert, Hartmut Helmke, Oliver Ohneiser, Qingran Zhan
Abstract: Recent work on self-supervised pre-training focus on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E)acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset.
Code — GitHub repository: https://github.com/idiap/w2v2-air-traffic
## Usage
You can use our Google Colab notebook to run and evaluate our model: https://github.com/idiap/w2v2-air-traffic/blob/master/src/eval_xlsr_atc_model.ipynb
(you need to change the `MODEL_ID` param to `MODEL_ID=Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-atcosim`)
## Intended uses & limitations
This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets, e.g., LibriSpeech or CommonVoice.
## Training and evaluation data
See Table 1 (page 3) in our paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822). We described there the partitions of how to use our model.
- We use the ATCOSIM dataset for fine-tuning this model. You can download the raw data here: https://www.spsc.tugraz.at/databases-and-tools/atcosim-air-traffic-control-simulation-speech-corpus.html
- However, do not worry, we have prepared the database in `Datasets format`. Here, [ATCOSIM CORPUS on HuggingFace](https://huggingface.co/datasets/Jzuluaga/atcosim_corpus). You can scroll and check the train/test partitions, and even listen to some audios.
- If you want to prepare a database in HuggingFace format, you can follow the data loader script in: [data_loader_atc.py](https://huggingface.co/datasets/Jzuluaga/atcosim_corpus/blob/main/atc_data_loader.py).
## Writing your own inference script
If you use language model, you need to install the KenLM bindings with:
```bash
conda activate your_environment
pip install https://github.com/kpu/kenlm/archive/master.zip
```
The snippet of code:
```python
from datasets import load_dataset, load_metric, Audio
import torch
from transformers import AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
import torchaudio.functional as F
USE_LM = False
DATASET_ID = "Jzuluaga/atcosim_corpus"
MODEL_ID = "Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-atcosim"
# 1. Load the dataset
# we only load the 'test' partition, however, if you want to load the 'train' partition, you can change it accordingly
atcosim_corpus_test = load_dataset(DATASET_ID, "test", split="test")
# 2. Load the model
model = AutoModelForCTC.from_pretrained(MODEL_ID)
# 3. Load the processors, we offer support with LM, which should yield better resutls
if USE_LM:
processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID)
else:
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
# 4. Format the test sample
sample = next(iter(atcosim_corpus_test))
file_sampling_rate = sample['audio']['sampling_rate']
# resample if neccessary
if file_sampling_rate != 16000:
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), file_sampling_rate, 16000).numpy()
else:
resampled_audio = torch.tensor(sample["audio"]["array"]).numpy()
input_values = processor(resampled_audio, return_tensors="pt").input_values
# 5. Run the forward pass in the model
with torch.no_grad():
logits = model(input_values).logits
# get the transcription with processor
if USE_LM:
transcription = processor.batch_decode(logits.numpy()).text
else:
pred_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(pred_ids)
# print the output
print(transcription)
```
# Cite us
If you use this code for your research, please cite our paper with:
```
@article{zuluaga2022how,
title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
```
and,
```
@article{zuluaga2022bertraffic,
title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
```
and,
```
@article{zuluaga2022atco2,
title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others},
journal={arXiv preprint arXiv:2211.04054},
year={2022}
}
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 1.4757 | 6.41 | 500 | 0.0614 | 0.0347 |
| 0.0624 | 12.82 | 1000 | 0.0525 | 0.0277 |
| 0.0388 | 19.23 | 1500 | 0.0693 | 0.0241 |
| 0.03 | 25.64 | 2000 | 0.0666 | 0.0244 |
| 0.0235 | 32.05 | 2500 | 0.0604 | 0.0260 |
| 0.0226 | 38.46 | 3000 | 0.0625 | 0.0230 |
| 0.0163 | 44.87 | 3500 | 0.0603 | 0.0195 |
| 0.0157 | 51.28 | 4000 | 0.0628 | 0.0209 |
| 0.0152 | 57.69 | 4500 | 0.0692 | 0.0238 |
| 0.0122 | 64.1 | 5000 | 0.0607 | 0.0210 |
| 0.011 | 70.51 | 5500 | 0.0608 | 0.0213 |
| 0.0114 | 76.92 | 6000 | 0.0681 | 0.0211 |
| 0.0106 | 83.33 | 6500 | 0.0613 | 0.0210 |
| 0.0081 | 89.74 | 7000 | 0.0654 | 0.0196 |
| 0.0078 | 96.15 | 7500 | 0.0612 | 0.0191 |
| 0.0082 | 102.56 | 8000 | 0.0758 | 0.0237 |
| 0.0078 | 108.97 | 8500 | 0.0664 | 0.0206 |
| 0.0075 | 115.38 | 9000 | 0.0658 | 0.0197 |
| 0.0052 | 121.79 | 9500 | 0.0669 | 0.0218 |
| 0.0054 | 128.21 | 10000 | 0.0695 | 0.0211 |
| 0.0053 | 134.62 | 10500 | 0.0726 | 0.0227 |
| 0.0046 | 141.03 | 11000 | 0.0702 | 0.0212 |
| 0.0043 | 147.44 | 11500 | 0.0846 | 0.0200 |
| 0.0041 | 153.85 | 12000 | 0.0764 | 0.0200 |
| 0.0032 | 160.26 | 12500 | 0.0785 | 0.0201 |
| 0.0028 | 166.67 | 13000 | 0.0839 | 0.0197 |
| 0.0035 | 173.08 | 13500 | 0.0785 | 0.0210 |
| 0.0027 | 179.49 | 14000 | 0.0730 | 0.0188 |
| 0.002 | 185.9 | 14500 | 0.0794 | 0.0193 |
| 0.002 | 192.31 | 15000 | 0.0859 | 0.0211 |
| 0.0019 | 198.72 | 15500 | 0.0727 | 0.0183 |
| 0.0017 | 205.13 | 16000 | 0.0784 | 0.0187 |
| 0.0016 | 211.54 | 16500 | 0.0801 | 0.0196 |
| 0.0014 | 217.95 | 17000 | 0.0821 | 0.0185 |
| 0.0011 | 224.36 | 17500 | 0.0822 | 0.0176 |
| 0.001 | 230.77 | 18000 | 0.0856 | 0.0171 |
| 0.001 | 237.18 | 18500 | 0.0792 | 0.0176 |
| 0.001 | 243.59 | 19000 | 0.0826 | 0.0173 |
| 0.0006 | 250.0 | 19500 | 0.0854 | 0.0170 |
| 0.0007 | 256.41 | 20000 | 0.0850 | 0.0167 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.2