--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - KMayanja/backup_and_callhome model-index: - name: speaker-segmentation-fine-tuned-merged-backup-uganda-callhome-eng results: [] --- # speaker-segmentation-fine-tuned-merged-backup-uganda-callhome-eng This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the KMayanja/backup_and_callhome default dataset. It achieves the following results on the evaluation set: - Loss: 0.3085 - Der: 0.1123 - False Alarm: 0.0384 - Missed Detection: 0.0378 - Confusion: 0.0361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.3367 | 1.0 | 605 | 0.3336 | 0.1237 | 0.0481 | 0.0369 | 0.0387 | | 0.3267 | 2.0 | 1210 | 0.3148 | 0.1155 | 0.0416 | 0.0353 | 0.0386 | | 0.302 | 3.0 | 1815 | 0.3119 | 0.1124 | 0.0394 | 0.0379 | 0.0351 | | 0.29 | 4.0 | 2420 | 0.3088 | 0.1125 | 0.0393 | 0.0370 | 0.0361 | | 0.288 | 5.0 | 3025 | 0.3085 | 0.1123 | 0.0384 | 0.0378 | 0.0361 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1