--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: model results: [] --- # model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5336 - Accuracy: 0.765 - Precision: {'precision': 0.7894736842105263} - Recall: {'recall': 0.6593406593406593} - F1: {'f1': 0.7185628742514969} - Tp: 60 - Fp: 16 - Tn: 93 - Fn: 31 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Tp | Fp | Tn | Fn | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------------------------:|:------------------------------:|:--------------------------:|:--:|:--:|:--:|:--:| | 0.6134 | 2.0 | 18 | 0.5336 | 0.765 | {'precision': 0.7894736842105263} | {'recall': 0.6593406593406593} | {'f1': 0.7185628742514969} | 60 | 16 | 93 | 31 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0