--- base_model: ai-forever/ruRoberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ruRoberta-large_ner results: [] --- # ruRoberta-large_ner This model is a fine-tuned version of [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0824 - Precision: 0.7879 - Recall: 0.8667 - F1: 0.8254 - Accuracy: 0.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.2732 | 0.5833 | 0.7 | 0.6364 | 0.88 | | No log | 2.0 | 30 | 0.1424 | 0.7059 | 0.8 | 0.7500 | 0.94 | | No log | 3.0 | 45 | 0.0824 | 0.7879 | 0.8667 | 0.8254 | 0.9667 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0.dev20230621+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3