--- language: - "vi" tags: - "vietnamese" - "token-classification" - "pos" - "dependency-parsing" base_model: FPTAI/vibert-base-cased datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "Hai cái đầu thì tốt hơn một." --- # bert-base-vietnamese-upos ## Model Description This is a BERT model pre-trained on Vietnamese texts for POS-tagging and dependency-parsing, derived from [vibert-base-cased](https://huggingface.co/FPTAI/vibert-base-cased). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-vietnamese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-vietnamese-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("Hai cái đầu thì tốt hơn một.")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-vietnamese-upos") print(nlp("Hai cái đầu thì tốt hơn một.")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models