--- language: - "th" tags: - "thai" - "masked-lm" - "wikipedia" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # roberta-base-thai-char ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts with character-wise embeddings to use BertTokenizerFast. You can fine-tune `roberta-base-thai-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-char-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-thai-char-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-char") ```