--- datasets: - KomeijiForce/Text2Emoji language: - en metrics: - bertscore pipeline_tag: text2text-generation --- # EmojiLM This is a [BART](https://huggingface.co/facebook/bart-base) model pre-trained on the [Text2Emoji](https://huggingface.co/datasets/KomeijiForce/Text2Emoji) dataset to translate setences into series of emojis. For instance, "I love pizza" will be translated into "🍕😍". An example implementation for translation: ```python from transformers import BartTokenizer, BartForConditionalGeneration def translate(sentence, **argv): inputs = tokenizer(sentence, return_tensors="pt") generated_ids = generator.generate(inputs["input_ids"], **argv) decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True).replace(" ", "") return decoded path = "KomeijiForce/bart-base-emojilm" tokenizer = BartTokenizer.from_pretrained(path) generator = BartForConditionalGeneration.from_pretrained(path) sentence = "I love the weather in Alaska!" decoded = translate(sentence, num_beams=4, do_sample=True, max_length=100) print(decoded) ``` You will probably get some output like "❄️🏔️😍". If you find this model & dataset resource useful, please consider cite our paper: ``` @article{DBLP:journals/corr/abs-2311-01751, author = {Letian Peng and Zilong Wang and Hang Liu and Zihan Wang and Jingbo Shang}, title = {EmojiLM: Modeling the New Emoji Language}, journal = {CoRR}, volume = {abs/2311.01751}, year = {2023}, url = {https://doi.org/10.48550/arXiv.2311.01751}, doi = {10.48550/ARXIV.2311.01751}, eprinttype = {arXiv}, eprint = {2311.01751}, timestamp = {Tue, 07 Nov 2023 18:17:14 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2311-01751.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```