--- license: apache-2.0 --- # Jupiter-k-7B-slerp ( My Favorite model! ) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/_oA7svKBKwqpaKVf_MFGc.png) Jupiter-k-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/NeuralContamination-7B-ties](https://huggingface.co/Kukedlc/NeuralContamination-7B-ties) * [Kukedlc/NeuralTopBench-7B-ties](https://huggingface.co/Kukedlc/NeuralTopBench-7B-ties) * [Gille/StrangeMerges_32-7B-slerp](https://huggingface.co/Gille/StrangeMerges_32-7B-slerp) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuralContamination-7B-ties parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: Kukedlc/NeuralTopBench-7B-ties parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: Gille/StrangeMerges_32-7B-slerp parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: Kukedlc/NeuralMaxime-7B-slerp parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage - Stream ```python # Requirements !pip install -qU transformers accelerate bitsandbytes # Imports & settings from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer import warnings import os os.environ["TOKENIZERS_PARALLELISM"] = "false" warnings.filterwarnings('ignore') # Model & Tokenizer MODEL_NAME = "Kukedlc/Jupiter-k-7B-slerp" model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:1', load_in_4bit=True) tok = AutoTokenizer.from_pretrained(MODEL_NAME) # Inference prompt = "I want you to generate a theory that unites quantum mechanics with the theory of relativity and cosmic consciousness" inputs = tok([prompt], return_tensors="pt").to('cuda') streamer = TextStreamer(tok) # Despite returning the usual output, the streamer will also print the generated text to stdout. _ = model.generate(**inputs, streamer=streamer, max_new_tokens=512, do_sample=True, num_beams=1, top_p=0.9, temperature=0.7) ``` ## 💻 Usage - Clasic ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Jupiter-k-7B-slerp" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```