--- tags: - merge - mergekit - lazymergekit - mistralai/Mistral-7B-Instruct-v0.2 - NousResearch/Yarn-Mistral-7b-128k - Kukedlc/MyModelsMerge-7b base_model: - mistralai/Mistral-7B-Instruct-v0.2 - NousResearch/Yarn-Mistral-7b-128k - Kukedlc/MyModelsMerge-7b --- # NeuralContext-7b-v2 NeuralContext-7b-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) * [Kukedlc/MyModelsMerge-7b](https://huggingface.co/Kukedlc/MyModelsMerge-7b) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-Instruct-v0.2 # No parameters necessary for base model - model: mistralai/Mistral-7B-Instruct-v0.2 parameters: density: 0.44 weight: 0.2 - model: NousResearch/Yarn-Mistral-7b-128k parameters: density: 0.66 weight: 0.4 - model: Kukedlc/MyModelsMerge-7b parameters: density: 0.55 weight: 0.4 merge_method: dare_ties base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralContext-7b-v2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```