--- tags: - merge - mergekit - lazymergekit - automerger/YamShadow-7B - automerger/OgnoExperiment27-7B - automerger/PasticheNeuralsirkrishna-7B - automerger/Experiment26Neuralarjuna-7B - Kukedlc/NeuralGanesha-7b base_model: - automerger/YamShadow-7B - automerger/OgnoExperiment27-7B - automerger/PasticheNeuralsirkrishna-7B - automerger/Experiment26Neuralarjuna-7B - Kukedlc/NeuralGanesha-7b --- # Ramakrishna-7b-v4 Ramakrishna-7b-v4 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [automerger/YamShadow-7B](https://huggingface.co/automerger/YamShadow-7B) * [automerger/OgnoExperiment27-7B](https://huggingface.co/automerger/OgnoExperiment27-7B) * [automerger/PasticheNeuralsirkrishna-7B](https://huggingface.co/automerger/PasticheNeuralsirkrishna-7B) * [automerger/Experiment26Neuralarjuna-7B](https://huggingface.co/automerger/Experiment26Neuralarjuna-7B) * [Kukedlc/NeuralGanesha-7b](https://huggingface.co/Kukedlc/NeuralGanesha-7b) ## 🧩 Configuration ```yaml models: - model: automerger/YamShadow-7B # No parameters necessary for base model - model: automerger/YamShadow-7B parameters: density: 0.66 weight: 0.2 - model: automerger/OgnoExperiment27-7B parameters: density: 0.55 weight: 0.2 - model: automerger/PasticheNeuralsirkrishna-7B parameters: density: 0.44 weight: 0.2 - model: automerger/Experiment26Neuralarjuna-7B parameters: density: 0.33 weight: 0.2 - model: Kukedlc/NeuralGanesha-7b parameters: density: 0.22 weight: 0.2 merge_method: dare_ties base_model: automerger/YamShadow-7B parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Ramakrishna-7b-v4" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```