--- license: cc library_name: peft tags: - generated_from_trainer base_model: HuggingFaceTB/cosmo-1b model-index: - name: lora-out results: [] datasets: - vicgalle/alpaca-gpt4 --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: HuggingFaceTB/cosmo-1b model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: vicgalle/alpaca-gpt4 type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out sequence_len: 2048 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 16 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: wandb_project: CosmoAlpacaLight-1b-v0.1 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# lora-out This model is a fine-tuned version of [HuggingFaceTB/cosmo-1b](https://huggingface.co/HuggingFaceTB/cosmo-1b) on the alpaca-gpt4 dataset. It achieves the following results on the evaluation set: - Loss: 1.0717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0447 | 1.0 | 662 | 1.0717 | ### Framework versions - PEFT 0.8.2 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.17.1 - Tokenizers 0.15.0