--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy - precision - recall - f1 model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 - name: Precision type: precision value: 0.8802816627816629 - name: Recall type: recall value: 0.87 - name: F1 type: f1 value: 0.8627110595989314 --- [Visualize in Weights & Biases](https://wandb.ai/raspuntinov_ai/huggingface/runs/8epo656a) # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6501 - Accuracy: 0.87 - Precision: 0.8803 - Recall: 0.87 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.1743 | 1.0 | 113 | 2.0604 | 0.38 | 0.5273 | 0.38 | 0.3101 | | 1.6179 | 2.0 | 226 | 1.4299 | 0.62 | 0.6136 | 0.62 | 0.5877 | | 1.0981 | 3.0 | 339 | 1.0223 | 0.79 | 0.8516 | 0.79 | 0.7669 | | 0.9785 | 4.0 | 452 | 0.8722 | 0.71 | 0.7748 | 0.71 | 0.6733 | | 0.8834 | 5.0 | 565 | 0.8363 | 0.76 | 0.7691 | 0.76 | 0.7449 | | 0.4936 | 6.0 | 678 | 0.6241 | 0.82 | 0.8313 | 0.82 | 0.8193 | | 0.2772 | 7.0 | 791 | 0.5648 | 0.85 | 0.8623 | 0.85 | 0.8459 | | 0.1213 | 8.0 | 904 | 0.6919 | 0.81 | 0.8429 | 0.81 | 0.7997 | | 0.0958 | 9.0 | 1017 | 0.5527 | 0.86 | 0.8682 | 0.86 | 0.8541 | | 0.0194 | 10.0 | 1130 | 0.6840 | 0.85 | 0.8645 | 0.85 | 0.8420 | | 0.0151 | 11.0 | 1243 | 0.6214 | 0.86 | 0.8642 | 0.86 | 0.8542 | | 0.1239 | 12.0 | 1356 | 0.6501 | 0.87 | 0.8803 | 0.87 | 0.8627 | | 0.0049 | 13.0 | 1469 | 0.6651 | 0.87 | 0.8803 | 0.87 | 0.8627 | | 0.0043 | 14.0 | 1582 | 0.7188 | 0.87 | 0.8803 | 0.87 | 0.8627 | | 0.0035 | 15.0 | 1695 | 0.6808 | 0.87 | 0.8803 | 0.87 | 0.8627 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1