--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0515HMA8H results: [] --- # G0515HMA8H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.227 | 0.09 | 10 | 2.9881 | | 2.7548 | 0.18 | 20 | 2.3671 | | 1.9906 | 0.27 | 30 | 1.5123 | | 1.1147 | 0.36 | 40 | 0.6531 | | 0.4077 | 0.45 | 50 | 0.2179 | | 0.1821 | 0.54 | 60 | 0.1575 | | 0.1542 | 0.63 | 70 | 0.1511 | | 0.1527 | 0.73 | 80 | 0.1501 | | 0.1431 | 0.82 | 90 | 0.1497 | | 0.1459 | 0.91 | 100 | 0.1482 | | 0.1489 | 1.0 | 110 | 0.1489 | | 0.1434 | 1.09 | 120 | 0.1488 | | 0.1448 | 1.18 | 130 | 0.1497 | | 0.1469 | 1.27 | 140 | 0.1477 | | 0.1493 | 1.36 | 150 | 0.1477 | | 0.1428 | 1.45 | 160 | 0.1508 | | 0.1449 | 1.54 | 170 | 0.1477 | | 0.1458 | 1.63 | 180 | 0.1469 | | 0.1458 | 1.72 | 190 | 0.1480 | | 0.1453 | 1.81 | 200 | 0.1481 | | 0.1472 | 1.9 | 210 | 0.1474 | | 0.1472 | 1.99 | 220 | 0.1464 | | 0.143 | 2.08 | 230 | 0.1451 | | 0.1382 | 2.18 | 240 | 0.1433 | | 0.1395 | 2.27 | 250 | 0.1442 | | 0.1397 | 2.36 | 260 | 0.1415 | | 0.1377 | 2.45 | 270 | 0.1396 | | 0.134 | 2.54 | 280 | 0.1367 | | 0.1346 | 2.63 | 290 | 0.1355 | | 0.1313 | 2.72 | 300 | 0.1351 | | 0.1338 | 2.81 | 310 | 0.1346 | | 0.1326 | 2.9 | 320 | 0.1345 | | 0.136 | 2.99 | 330 | 0.1345 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0