--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0503HMA22H results: [] --- # V0503HMA22H This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8681 | 0.09 | 10 | 0.4172 | | 0.2073 | 0.18 | 20 | 0.1180 | | 0.1143 | 0.27 | 30 | 0.0880 | | 0.0961 | 0.36 | 40 | 0.0789 | | 0.0804 | 0.45 | 50 | 0.0744 | | 0.0861 | 0.54 | 60 | 0.0761 | | 0.0787 | 0.63 | 70 | 0.0696 | | 0.0757 | 0.73 | 80 | 0.0854 | | 0.0807 | 0.82 | 90 | 0.0686 | | 0.0806 | 0.91 | 100 | 0.0697 | | 0.0791 | 1.0 | 110 | 0.0647 | | 0.0651 | 1.09 | 120 | 0.0673 | | 0.063 | 1.18 | 130 | 0.0786 | | 0.0623 | 1.27 | 140 | 0.0629 | | 0.0638 | 1.36 | 150 | 0.0735 | | 0.0739 | 1.45 | 160 | 0.0622 | | 0.0593 | 1.54 | 170 | 0.0639 | | 0.0675 | 1.63 | 180 | 0.0626 | | 0.0555 | 1.72 | 190 | 0.0615 | | 0.068 | 1.81 | 200 | 0.0609 | | 0.0555 | 1.9 | 210 | 0.0609 | | 0.0503 | 1.99 | 220 | 0.0582 | | 0.0366 | 2.08 | 230 | 0.0591 | | 0.0334 | 2.18 | 240 | 0.0705 | | 0.0294 | 2.27 | 250 | 0.0722 | | 0.0296 | 2.36 | 260 | 0.0685 | | 0.0369 | 2.45 | 270 | 0.0674 | | 0.0303 | 2.54 | 280 | 0.0682 | | 0.0286 | 2.63 | 290 | 0.0684 | | 0.0312 | 2.72 | 300 | 0.0680 | | 0.0323 | 2.81 | 310 | 0.0675 | | 0.0304 | 2.9 | 320 | 0.0674 | | 0.0341 | 2.99 | 330 | 0.0674 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1