--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0515HMA1H results: [] --- # V0515HMA1H This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0863 | 0.09 | 10 | 0.9184 | | 0.3027 | 0.18 | 20 | 0.1319 | | 0.1256 | 0.27 | 30 | 0.1034 | | 0.1059 | 0.36 | 40 | 0.0856 | | 0.0881 | 0.45 | 50 | 0.0799 | | 0.1034 | 0.54 | 60 | 0.0912 | | 0.0937 | 0.63 | 70 | 0.0813 | | 0.0821 | 0.73 | 80 | 0.0783 | | 0.0869 | 0.82 | 90 | 0.0773 | | 0.0779 | 0.91 | 100 | 0.0714 | | 0.0838 | 1.0 | 110 | 0.0749 | | 0.075 | 1.09 | 120 | 0.0722 | | 0.0718 | 1.18 | 130 | 0.0774 | | 0.0679 | 1.27 | 140 | 0.0680 | | 0.0647 | 1.36 | 150 | 0.0670 | | 0.0703 | 1.45 | 160 | 0.0668 | | 0.0668 | 1.54 | 170 | 0.0646 | | 0.0691 | 1.63 | 180 | 0.0605 | | 0.0628 | 1.72 | 190 | 0.0643 | | 0.073 | 1.81 | 200 | 0.0615 | | 0.0572 | 1.9 | 210 | 0.0646 | | 0.0621 | 1.99 | 220 | 0.0626 | | 0.0484 | 2.08 | 230 | 0.0659 | | 0.0483 | 2.18 | 240 | 0.0623 | | 0.0455 | 2.27 | 250 | 0.0631 | | 0.0456 | 2.36 | 260 | 0.0617 | | 0.0476 | 2.45 | 270 | 0.0600 | | 0.0419 | 2.54 | 280 | 0.0614 | | 0.0385 | 2.63 | 290 | 0.0643 | | 0.0457 | 2.72 | 300 | 0.0624 | | 0.0457 | 2.81 | 310 | 0.0614 | | 0.0443 | 2.9 | 320 | 0.0609 | | 0.0461 | 2.99 | 330 | 0.0607 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0