--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9089708310401761 - name: Recall type: recall value: 0.9238169817652981 - name: F1 type: f1 value: 0.9163337771859743 - name: Accuracy type: accuracy value: 0.980618615660794 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0690 - Precision: 0.9090 - Recall: 0.9238 - F1: 0.9163 - Accuracy: 0.9806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 220 | 0.0951 | 0.8731 | 0.8890 | 0.8810 | 0.9740 | | No log | 2.0 | 440 | 0.0718 | 0.9029 | 0.9169 | 0.9099 | 0.9796 | | 0.1848 | 3.0 | 660 | 0.0690 | 0.9090 | 0.9238 | 0.9163 | 0.9806 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu118 - Datasets 2.20.0 - Tokenizers 0.15.1