--- datasets: - nvidia/HelpSteer2 - Skywork/Skywork-Reward-Preference-80K-v0.1 pipeline_tag: text-classification --- - **Paper:** [https://arxiv.org/pdf/2410.00847](https://arxiv.org/pdf/2410.00847) - **Model:** [URM-LLaMa-3.1-8B](https://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B) - Fine-tuned from [Skywork-Reward-Llama-3.1-8B](https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B) # Architecture
URM is one of the RMs in the figure. # Brief [URM-LLaMa-3.1-8B](https://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B) is an uncertain-aware reward model. This RM consists of a base model and an uncertainty-aware and attribute-specific value head. The base model of this RM is from [Skywork-Reward-Llama-3.1-8B](https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B). URM involves two-stage training: 1. **attributes regression** and 2. **gating layer learning**. ## Attribute Regression **Dataset:** [HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2) During training, instead of multi-attributes scores, outputs of the uncertainty-aware value head are parameters of a normal distribution, from which scores are sampled. Then we run regression on the outputs with the labels to train the value head. To enable gradient back-propagation, reparameterization technique is used. ## Gating Layer Learning **Dataset:** [Skywork-Reward-Preference-80K-v0.1](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.1) Inspired by [ArmoRM](https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1), we learn a gating layer to combine the multi-attribute scores instead of the fixed weights in [SteerLM-RM](https://huggingface.co/nvidia/Llama3-70B-SteerLM-RM). Learning objective of the gating layer is to prioritize chosen responses over rejected responses through the BT loss. We only use the five attributes from HelpSteer2: Helpfulness, Correctness, Coherence, Complexity and Verbosity. During this process, the value head and base model are kept frozen. # Usage ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "LxzGordon/URM-LLaMa-3.1-8B" model = AutoModelForSequenceClassification.from_pretrained( model_name, device_map='auto', trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "What is the range of the numeric output of a sigmoid node in a neural network?" response1 = "The output of a sigmoid node is bounded between -1 and 1." response2 = "The output of a sigmoid node is bounded between 0 and 1." resp1 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response1}] resp2 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response2}] # Format and tokenize the conversations resp1 = tokenizer.apply_chat_template(resp1, tokenize=False) resp2 = tokenizer.apply_chat_template(resp2, tokenize=False) resp1 = tokenizer(resp1, return_tensors="pt").to(model.device) resp2 = tokenizer(resp2, return_tensors="pt").to(model.device) with torch.no_grad(): score1 = model(resp1['input_ids'],attention_mask=resp1['attention_mask']).logits[0][0].item() score2 = model(resp2['input_ids'],attention_mask=resp2['attention_mask']).logits[0][0].item() print(score1,score2) # Response 1 score: 2.3285412788391113, Response 2 score: 12.438033103942871 ``` # Reference Please cite ``` @article{lou2024uncertainty, title={Uncertainty-aware Reward Model: Teaching Reward Models to Know What is Unknown}, author={Lou, Xingzhou and Yan, Dong and Shen, Wei and Yan, Yuzi and Xie, Jian and Zhang, Junge}, journal={arXiv preprint arXiv:2410.00847}, year={2024} } ```