--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results_bert-large-uncased results: [] --- # results_bert-large-uncased This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2128 - Accuracy: 0.9141 - Precision: 0.9182 - Recall: 0.9421 - F1: 0.9300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6415 | 0.09 | 50 | 0.5315 | 0.7175 | 0.6981 | 0.9394 | 0.8010 | | 0.4007 | 0.18 | 100 | 0.7702 | 0.7243 | 0.9892 | 0.5505 | 0.7074 | | 0.5158 | 0.28 | 150 | 0.4075 | 0.8591 | 0.8904 | 0.8748 | 0.8825 | | 0.3934 | 0.37 | 200 | 0.2809 | 0.8763 | 0.9354 | 0.8546 | 0.8932 | | 0.2691 | 0.46 | 250 | 0.3406 | 0.8832 | 0.8837 | 0.9294 | 0.9060 | | 0.2814 | 0.55 | 300 | 0.2582 | 0.8768 | 0.8512 | 0.9651 | 0.9046 | | 0.2735 | 0.64 | 350 | 0.2715 | 0.8953 | 0.8708 | 0.9711 | 0.9182 | | 0.2411 | 0.74 | 400 | 0.2389 | 0.9103 | 0.9242 | 0.9279 | 0.9260 | | 0.2371 | 0.83 | 450 | 0.2081 | 0.9104 | 0.9212 | 0.9316 | 0.9264 | | 0.1974 | 0.92 | 500 | 0.2128 | 0.9141 | 0.9182 | 0.9421 | 0.9300 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2