--- base_model: LennartKeller/longformer-gottbert-base-8192-aw512 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: de_longformer_abstr_summ results: [] --- # de_longformer_abstr_summ This model is a fine-tuned version of [LennartKeller/longformer-gottbert-base-8192-aw512](https://huggingface.co/LennartKeller/longformer-gottbert-base-8192-aw512) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2916 - Precision: 0.2656 - Recall: 0.2673 - F1: 0.2665 - Accuracy: 0.8948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2741 | 1.0 | 1171 | 0.2860 | 0.0914 | 0.0307 | 0.0459 | 0.8979 | | 0.2474 | 2.0 | 2342 | 0.2694 | 0.2918 | 0.2508 | 0.2697 | 0.8982 | | 0.2074 | 3.0 | 3513 | 0.2916 | 0.2656 | 0.2673 | 0.2665 | 0.8948 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2