--- base_model: meta-llama/Llama-3.2-3B-Instruct library_name: peft license: llama3.2 tags: - trl - sft - Llama - generated_from_trainer model-index: - name: Llama-3.2-3B-KAM results: [] --- # KAM-Llama3.2-3B This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results #### Step    Training Loss - 50     2.436700 - 100     2.103400 - 150     2.048900 - 200     2.041700 - 250     2.002900 - 300     1.991700 - 350     1.977400 - 400     1.974500 - 450     1.945000 - 500     1.951100 - 550     1.950700 - 600     1.943000 - 650     1.927900 - 700     1.920900 - 750     1.903400 - 800     1.896000 - 850     1.910800 - 900     1.904600 - 950     1.918100 - 1000     1.911500 - 1050     1.909100 - 1100     1.928900 - 1150     1.896100 - 1200     1.876700 ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1